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Abstract

Lake-effect snow poses severe risks to communities
around the Great Lakes. However, accurate prediction
remains elusive due to a fundamental challenge: critical
satellite observations are unavailable at night when these
systems rapidly intensify. We propose a novel approach
to lake-effect snow forecasting. First, we solve the tem-
poral data discontinuity problem. Then, we leverage com-
plete observations for physics-informed prediction. Our
two-stage framework uses PatchGAN to synthesize miss-
ing visible and near-infrared satellite imagery from con-
tinuous infrared data. This approach improves forecast
accuracy by 59% compared to models trained on incom-
plete observations. These synthesized sequences then feed
into a physics-informed neural network architecture that
modifies MetNet-3 and enforces atmospheric conservation
laws while processing high-density weather station data
at adaptive resolutions. Most remarkably, our approach
reveals that harsh lake-effect events become more pre-
dictable over longer time periods, improving from 27.1%
accuracy at 24 hours to 77.6% at 72 hours as large-
scale precursor patterns emerge in the complete observa-
tional record. When evaluated using 11 years of Great
Lakes data, our framework achieves an overall accuracy
of 87.4% for 24-hour forecasts and 81.3% for 72-hour
forecasts. This substantially outperforms traditional NWP
models (42.3%, 66.5%) and standard deep learning ap-
proaches (45.3%, 64.1%). By showing that intelligent data
synthesis can unlock the potential of physics-informed
machine learning, our work establishes new groundwork
for predicting localized severe weather phenomena, which
have historically been limited by observational gaps.

Index Terms— Physics-Informed Neural Networks, Lake-
Effect Snow Prediction, Cross-Spectral Image Synthesis, Tem-
poral Data Completion, Multi-Scale Meteorological Forecast-
ing, Generative Adversarial Networks, Adaptive Resolution
Targeting, ConvLSTM

1 Introduction

Lake-effect snow exemplifies the challenge of predicting local-
ized severe weather in an era of climate extremes. These phe-

Figure 1: Satellite imagery capturing intense lake-effect snow
bands flowing off the Great Lakes. These narrow bands, typi-
cally 10-20 km wide, can produce dramatically different con-
ditions in neighboring communities—heavy snowfall in one
location while areas just kilometers away remain clear.

nomena occur when Arctic air masses traverse the relatively
warm waters of the Great Lakes, undergoing rapid transforma-
tion that produces intense, narrow bands of snowfall capable
of depositing over 100 cm in 48 hours (Figure 1). The De-
cember 2022 Buffalo snowstorm, which resulted in 47 deaths,
underscores the critical need for an accurate prediction of these
events [26]. However, despite decades of research and ad-
vances in weather modeling, lake-effect snow remains noto-
riously difficult to forecast because of a fundamental observa-
tional challenge: the very data needed to track these rapidly
evolving systems become unavailable precisely when the sys-
tems are most active.

The core challenge lies in the temporal discontinuity of
satellite observations. Visible and near-infrared imagery pro-
vides crucial information about cloud structure and evolution,
yet these spectral bands are only available during daylight
hours, approximately 7-8 hours during winter months when
lake-effect snow is most prevalent. This creates critical 12- to
16-hour gaps in observations, often coinciding with evening
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and early morning periods when cold air advection intensifies
and lake effect systems rapidly develop [18]. Current forecast-
ing approaches attempt to work around these gaps through var-
ious strategies. Numerical Weather Prediction (NWP) mod-
els rely on sparse ground observations and coarse-resolution
physics simulations, while machine learning methods simply
skip over missing timesteps. Neither approach adequately cap-
tures the continuous evolution of atmospheric processes that
drive lake-effect formation.

This observational discontinuity cascades into two addi-
tional challenges that have limited prediction accuracy. First,
without continuous monitoring, the models cannot capture
the mesoscale processes (atmospheric phenomena occurring
at scales of 2-200 km) that organize scattered convection into
coherent snow bands. These bands, typically 10-20 km wide,
fall below the resolution of operational NWP models (10-25
km) and require persistent tracking to predict their forma-
tion, movement, and intensification [22]. Second, the lack of
complete temporal data prevents the models from learning the
physical relationships between precursor atmospheric condi-
tions and subsequent precipitation. Although physics-based
models encode these relationships through equations, they
struggle with nonlinear lake-atmosphere interactions; con-
versely, data-driven models could potentially learn these com-
plex patterns but require continuous observations to do so ef-
fectively [1, 21].

Our Approach: Data Synthesis Enables Physics-In-
formed Prediction These fundamental limitations motivate
a paradigm shift in how we approach lake-effect snow fore-
casting. Rather than developing increasingly sophisticated
models to work around observational gaps—the traditional
approach that has yielded incremental improvements over
decades—we propose addressing the root cause directly. We
hypothesize that solving the data completeness problem first
will unlock the full potential of physics-informed machine
learning approaches that have been constrained by fragmented
observations.

We propose a new approach to lake-effect snow prediction:
rather than working around observational gaps, we first solve
the data completeness problem through intelligent synthesis,
then leverage these complete data for physics-informed pre-
diction. Our approach introduces a two-stage framework that
fundamentally reimagines how we handle missing meteoro-
logical observations. In the first stage, we employ PatchGAN
(a type of Generative Adversarial Network that operates on im-
age patches rather than whole images), to synthesize missing
visible and near-infrared imagery from the continuously avail-
able infrared band. Unlike simple interpolation, our approach
learns the complex physical relationships between spectral sig-
natures, cloud properties, and atmospheric states, generating
meteorologically consistent imagery that maintains the spa-
tial and temporal coherence necessary for tracking lake-effect
development. This synthesis transforms fragmented observa-
tions into continuous 15-minute interval sequences that span
complete diurnal cycles.

The second stage leverages these temporally complete ob-

servations within a novel prediction architecture that com-
bines the pattern recognition capabilities of deep learning with
the physical constraints of atmospheric science. We enhance
the MetNet-3 architecture (a state-of-the-art neural weather
model from Google DeepMind) by replacing its dependency
on coarse NWP data with a Physics-Informed Neural Network
(PINN) module—a neural network that incorporates physi-
cal laws as constraints during training—that processes high-
density weather station observations. The framework also
employs Convolutional Long Short-Term Memory (ConvL-
STM) networks, which are specialized recurrent neural net-
works that handle spatiotemporal data by replacing standard
LSTM’s fully connected operations with convolutions to pre-
serve spatial structure while modeling temporal dependencies.
This modification enables fine-scale resolution where needed
while enforcing fundamental conservation laws, mass conti-
nuity, energy balance, and thermodynamic constraints, which
ensure that predictions remain physically plausible through-
out the 72-hour forecast horizon. To maintain computa-
tional efficiency despite the increased resolution, we imple-
ment adaptive spatial targeting that dynamically allocates re-
sources based on lake-effect probability, achieving 500-meter
resolution in high-risk zones while using coarser grids else-
where.

The synergy between complete temporal observations and
physics-informed prediction yields remarkable improvements
in forecast accuracy. Our PatchGAN synthesis achieves a
59% improvement in Critical Success Index (0.67 vs. 0.42)
compared to models trained on gapped data, demonstrating
that continuous observations are essential for capturing atmo-
spheric evolution. Most surprisingly, our framework shows
dramatic improvement in predicting harsh lake-effect events at
extended forecast horizons—accuracy increases from 27.1%
at 24 hours to 77.6% at 72 hours. This counterintuitive re-
sult reveals that severe events are preceded by large-scale at-
mospheric patterns that become increasingly predictable over
multi-day timescales, but only when models have access to
complete observational sequences that capture these evolving
patterns. Overall, our approach achieves 87.4% accuracy for
24-hour forecasts and maintains 81.3% accuracy at 72 hours,
substantially outperforming both physics-based FLake NWP
and data-driven MetNet-3 baselines.

Beyond improving lake-effect snow prediction, this work
demonstrates the power of addressing fundamental data limi-
tations in environmental forecasting. By solving the tempo-
ral completeness problem first, we enable physics-informed
deep learning approaches to reach their full potential. The
framework’s success suggests that many challenging predic-
tion problems in meteorology and related fields may benefit
more from intelligent data synthesis than from increasingly
complex models trained on incomplete observations. Our ap-
proach is particularly relevant as climate change intensifies ex-
treme weather events, demanding prediction systems that can
accurately forecast rare but high-impact phenomena despite
limited historical examples.

The remainder of this paper presents our technical approach
and comprehensive evaluation. Section 2 reviews current limi-
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tations in meteorological time series prediction and establishes
the need for temporal data synthesis. Section 3 details our
PatchGAN-based cross-spectral synthesis methodology. Sec-
tion 4 presents the physics-informed prediction framework
built upon synthesized observations. Section 5 provides ex-
tensive experimental validation using 11 years of Great Lakes
data. Finally, Section 6 discusses implications for operational
forecasting and future research directions in hybrid physics-
ML approaches.

2 Related Work

Lake-effect snow prediction requires robust handling of tem-
poral data discontinuities and advanced modeling techniques.
This section reviews existing approaches to time series predic-
tion with fractured data, followed by an examination of both
traditional numerical weather prediction methods and emerg-
ing machine learning techniques applied to meteorological
forecasting.

2.1 Time Series Prediction with Fractured Data

Meteorological forecasting is contingent upon the continuous
availability of time series data. However, sensor outages, ir-
regular sampling, and environmental factors frequently cre-
ate gaps in observations. The fragmentation of these datasets
poses considerable challenges for prediction models. Miss-
ing values propagate errors through forecast sequences, while
abrupt changes in measurement conditions can introduce arti-
ficial shifts in data patterns. The ability to predict lake-effect
snow with a reasonable degree of accuracy is predicated on
the implementation of specialized techniques that address the
inherent imperfections in the data.

2.1.1 Techniques for Stationary Time Series

In the context of meteorological research, the term “’stationary
time series” is employed to denote a particular class of tempo-
ral data that exhibits consistent statistical properties despite the
presence of seasonal variations. Despite the statistical stability
exhibited, fractured data continues to present challenges. Me-
teorological sensors frequently experience interruptions dur-
ing periods of severe weather events, which correspond with
the most valuable data, resulting in systematic gaps in obser-
vation records [18, 27].

Several imputation methods address these gaps in stationary
contexts. Simple linear interpolation works for brief interrup-
tions in slowly changing variables like temperature. More so-
phisticated approaches use k-nearest neighbors or regression
methods to reconstruct missing values based on temporal and
spatial correlations [27]. These techniques preserve dataset
continuity for subsequent analysis with classical models like
ARIMA, which require regular time intervals to function prop-
erly [4].

Recent deep learning approaches offer alternatives for han-
dling missing data directly. Recurrent Neural Networks, par-
ticularly LSTM networks and GRUs, incorporate masking

strategies that allow training despite data gaps [14]. GANs
generate synthetic data to augment incomplete datasets, while
techniques like time series shifting and scaling enrich training
data and improve model robustness [10].

2.1.2 Techniques for Non-Stationary Time Series

Lake-effect snow patterns demonstrate non-stationary behav-
ior—meaning their statistical properties (mean, variance, co-
variance) change over time—due to changing climate condi-
tions and seasonal variations. In contrast to stationary time
series, non-stationary data exhibit evolving statistical proper-
ties that necessitate specialized handling beyond conventional
imputation methods. The utilization of seasonal-trend decom-
position with the Loess (STL) and wavelet transforms is a
method of separating long-term trends and seasonal patterns
from residual variability. This process renders the data more
amenable to standard forecasting techniques [31, 30].

Hybrid models combine statistical and deep learning ap-
proaches to address non-stationarity. ARIMA components
capture linear trends while LSTM networks model nonlinear
dependencies in the residuals. These hybrid systems demon-
strate improved accuracy on meteorological datasets with frac-
tured observations [16].

Change point detection algorithms are designed to identify
structural breaks in climate data caused by sensor relocations
or atmospheric regime shifts. It has been demonstrated that
methods such as CUSUM charts and Bayesian detection algo-
rithms are capable of recognizing when statistical properties
undergo abrupt changes. Consequently, these methods enable
forecasting models to adapt accordingly [6, 13].

Modern generative methods like GANs not only fill data
gaps but also quantify prediction uncertainty when combined
with Bayesian inference. Transformer architectures with
self-attention mechanisms capture long-range dependencies in
weather patterns, enhancing forecast performance despite data
irregularities [3, 20].

2.2 Numerical Weather Prediction Models

NWP marked a fundamental shift from purely observation-
based forecasting to the mathematical simulation of atmo-
spheric dynamics. NWP models create detailed physical
representations of weather systems, allowing prediction of
specific variables—such as precipitation amounts and wind
speeds—with greater precision than earlier methods.

These models construct mathematical representations of
global atmospheric conditions. The European Centre’s Inte-
grated Forecast System exemplifies advanced NWP capabili-
ties, providing forecasts across 10,000 square kilometer grid
cells at 500 hPa pressure levels (approximately 5,500 meters
altitude) [19]. For localized predictions, limited-area models
use finer 1-5 kilometer resolutions and focus on near-surface
conditions at 2 meters above ground or 850 hPa pressure lev-
els.

Notably, the detailed output of NWP models offers valuable
large-scale atmospheric context that forms the foundation for
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comprehensive weather analysis and regional forecasting. De-
spite this key strength, NWP models face four inherent limita-
tions that significantly impact their forecasting accuracy [9]:

1. Forecast Horizon: Prediction accuracy systematically
degrades with increasing time horizons. Short-range
forecasts (1-2 days) maintain approximately 75% accu-
racy, while medium-range forecasts (3-10 days) average
around 60%. This decline stems from the non-linear na-
ture of atmospheric dynamics, where minute initial uncer-
tainties exponentially amplify through complex chaotic
interactions.

2. Weather Parameters: Predictability varies substantially
across different meteorological variables. Temperature
forecasts typically demonstrate higher reliability com-
pared to precipitation predictions, which are compro-
mised by the intricate atmospheric and thermodynamic
processes governing rainfall and snowfall formation.

3. Geographical Complexity: Topographical heterogene-
ity introduces significant modeling challenges. Regions
with complex terrain, particularly mountainous land-
scapes and zones with pronounced microclimates like the
Great Lakes, present substantial predictive obstacles. Lo-
cal geographic effects, terrain-induced wind patterns, and
surface-atmosphere interactions create localized atmo-
spheric behaviors that standard parameterization schemes
struggle to capture accurately.

4. Seasonal Atmospheric Dynamics: Forecasting accu-
racy exhibits pronounced seasonal variability. Certain at-
mospheric circulation patterns, such as stable winter an-
ticyclonic conditions or well-defined summer monsoon
regimes. These provide more predictable backgrounds.
Conversely, transitional seasons characterized by rapid
atmospheric restructuring and increased baroclinic insta-
bility introduce heightened uncertainty, challenging even
advanced NWP models.

These limitations particularly affect lake-effect snow predic-
tion, which requires both high spatial resolution and accurate
modeling of lake-atmosphere interactions. Current operational
NWP models frequently misplace snow bands or misjudge
their intensity.

2.3 Machine Learning in Meteorological Fore-
casting

The increasing volume of meteorological data from improved
observational instruments, satellites, and ground sensors has
enabled machine learning approaches to weather prediction.
These data-driven models identify statistical patterns in large
datasets that may elude physics-based methods, offering po-
tential accuracy improvements and computational efficiencies.

2.3.1 ML Approaches and Architectures

GPU acceleration in the early 2010s enabled deep learning ap-
plications in meteorology [26]. These models process larger

parameter sets and integrate diverse data sources more ef-
fectively than traditional methods. Specialized neural ar-
chitectures address different aspects of weather prediction:
CNNs extract spatial patterns from satellite imagery to iden-
tify cloud formations preceding lake-effect snow, while RNNs
and LSTMs capture temporal dependencies that reveal how
weather patterns evolve.

Meteorological ML models draw from four primary data
sources: satellite imagery tracking cloud formations and sur-
face temperatures, ground station measurements of atmo-
spheric conditions, radar monitoring of precipitation, and
weather balloon profiles of vertical atmospheric structure [5].
The integration of these varied data streams represents a key
advantage over traditional single-source approaches.

Two main research directions have emerged in meteorolog-
ical ML applications. Storm identification systems like TI-
TAN [7] and NEXRAD analyze radar data to identify and
track precipitation cells with accuracy proportional to radar
quality. Short-term forecasting systems extend these capabil-
ities to predict future radar images, achieving 85-90% accu-
racy for 1-2 hour forecasts. Comparative studies of diurnal
precipitation patterns show that nowcasting systems maintain
superior skill over numerical weather prediction models for 2-
4 hours before performance converges [2]. Recent work on
convection-permitting WRF simulations for lake-effect sys-
tems demonstrates challenges with accuracy and reliability in
forecasting applications, showing equitable threat scores of
0.24 for banded events and lower performance for non-banded
events [22], thus demonstrating ML’s competitiveness with es-
tablished numerical models.

2.3.2 Limitations of Current ML Weather Models

Despite their capabilities, current ML weather models face sig-
nificant limitations. Most focus on short-term forecasting (un-
der 24 hours) despite access to decades of historical data. This
restricted time horizon limits their utility for planning activi-
ties requiring longer lead times.

Nowcasting dominates ML weather applications [17], with
accuracy declining predictably as prediction time increases.
TITAN [19] achieves over 90% accuracy for 30-minute fore-
casts but falls below 70% for 2-hour predictions, reflecting
how chaotic atmospheric dynamics amplify initial condition
errors over time.

Current ML models also lack regional adaptability [5].
Models trained on Great Lakes data require complete re-
training before deployment elsewhere. Transfer learning ap-
proaches could potentially allow models to adapt learned fea-
tures to new regions with minimal additional training.

Most significantly, current ML frameworks excel at gen-
eral weather patterns but rarely target specific phenomena like
lake-effect snow [28]. These localized, complex events re-
quire models that combine physical understanding of lake-
atmosphere interactions with pattern recognition capabilities
of deep learning.
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2.3.3 Physics-Informed Neural Networks in Meteorology

Physics-Informed Neural Networks (PINNs) represent an
emerging approach that integrates physical laws directly into
neural network training through differentiable constraints.
While PINNs have been successfully applied to fluid dynamics
and climate modeling, their application to localized precipi-
tation prediction remains limited. Recent work has explored
PINNs for atmospheric flow modeling and general weather
prediction, but to our knowledge, no prior work has specifi-
cally applied PINN architectures to lake-effect snow predic-
tion. The unique challenges of lake-effect systems—involving
complex air-water interactions, boundary layer dynamics, and
topographic effects—require specialized PINN formulations
that go beyond standard atmospheric applications. Our work
addresses this gap by developing PINN constraints specifically
tailored to lake-atmosphere energy and moisture exchange
processes.

2.4 Past Approaches to Lake-Effect Snow Pre-
diction

Traditional lake-effect snow prediction has relied on simplified
physical indicators including temperature gradients between
lake surfaces and air masses, wind direction relative to lake
orientation, and vertical atmospheric stability [23, 29]. These
models typically represent lakes as one-dimensional vertical
columns, neglecting horizontal patterns and spatial variations
that significantly influence snow formation.

This one-dimensional approach fails to capture several crit-
ical processes: temperature variations across lake surfaces that
affect cloud development, wind shifts that create convergence
zones enhancing precipitation, and shoreline configurations
that influence snow band formation and intensification.

Our research extends traditional approaches by incorpo-
rating satellite imagery analysis to capture two-dimensional
cloud pattern evolution over the Great Lakes. We apply CNN-
based classification to extract features from infrared and visi-
ble satellite imagery, identifying cloud signatures that precede
lake-effect snow events. By combining these spatial patterns
with traditional vertical profile data, our model improves 6-
hour forecast accuracy by 23% compared to conventional ap-
proaches.

3 Multimodal Satellite Image Synthe-
sis for Continuous Cloud Monitoring

Continuous monitoring of cloud formations over the Great
Lakes is essential for lake-effect snow prediction, yet current
satellite observation systems suffer from systematic temporal
gaps. Visible band imagery (0.6-0.7 pm), which provides the
highest resolution cloud structure data, is unavailable during
nighttime hours, approximately 12 hours daily during winter.
Near-IR data (1.3-1.6 pum), crucial for determining the prop-
erties of cloud particles, experience sporadic gaps during ad-
verse weather. Only IR and near-IR band imagery (10.3-11.3

pm) provides continuous 24-hour coverage. These gaps cre-
ate a fundamental challenge for tracking the rapid evolution of
lake-effect systems.

We address this data incompleteness through a cross-
spectral synthesis approach that leverages the complementary
nature of satellite imagery. Since atmospheric dynamics man-
ifest consistently across spectral bands, we use continuously
available IR data to synthesize missing visible and near-IR
observations. Figure 2 illustrates our complete multimodal
synthesis pipeline, which transforms fragmented satellite ob-
servations into continuous temporal sequences. This section
presents our Patch Generative Adversarial Network (Patch-
GAN) framework for generating meteorologically consistent
synthetic imagery.

3.1 Cross-Spectral Image Synthesis Frame-
work

We formulate cross-spectral synthesis as a conditional image

generation problem. Each satellite image in the modality m

is represented as a high-dimensional vector v™. Given avail-

able IR observations v!%, we synthesize missing visible-band

imagery v"' 7 by modeling:
~VIS

D = arg max p(v
oVIS

VIS’|UIR).

)

For temporal sequences, we incorporate historical obser-
vations to capture cloud evolution dynamics. Given IR
sequence {0{% ... dIF} and partial visible-band history

{oY19,..., 6/ 5} where k < n due to nighttime gaps, we
synthesize:
VIS VIS|AIR ~IR AVIS VIS
Un, :argmaxp(vn |U1 sy Un 9 V1 gy U )
VYIS

2
This formulation leverages both cross-spectral correlations
and temporal continuity to generate physically plausible im-

agery.

3.2 Patch Generative Adversarial Network Ar-
chitecture

Traditional interpolation methods fail to capture the non-linear
dynamics of cloud formation in lake-effect systems. We em-
ploy a PatchGAN [15] that learns the underlying probability
distribution of cloud formations conditioned on available spec-
tral data. Figure 3 illustrates our architecture.

3.2.1 Generator with Multi-Scale Skip Connections

Our generator employs skip connections between encoding
and decoding layers to preserve fine-grained cloud details es-
sential for accurate snow band delineation. These connec-
tions maintain: (i) sharp cloud edge boundaries that determine
precipitation zones, (ii) spatial relationships between cloud
formations and geographic features, and (iii) efficient gradi-
ent flow for learning multi-scale meteorological dependencies.
This architecture is particularly effective for lake-effect snow
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Figure 2: Multimodal satellite data synthesis pipeline. Continuously available IR imagery conditions the generation of missing
visible and near-IR bands through PatchGAN, producing complete temporal sequences for downstream prediction tasks.
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Figure 3: PatchGAN architecture for cross-spectral synthesis. The generator uses IR and near-IR inputs to synthesize missing
visible-band imagery, while the patch discriminator ensures local textural consistency.

bands, which manifest as narrow structures (10-20 km wide)
requiring precise spatial representation.

3.2.2 Patch-Based Discrimination

Rather than evaluating entire images holistically, our discrim-
inator D(x;0y) classifies 70 x 70 pixel patches as real or
synthetic. This Markov random field approach enables de-
tailed discrimination of local cloud textures that distinguish
precipitation-bearing formations. We enhance discrimination
capability with a Res2Net module [8] that captures features
across multiple scales within each convolutional block, from
small-scale cloud textures (1-5 km) to mesoscale patterns (20-
100 km).

The adversarial training objective follows:

mgn max V(D,G) = Eppya(a) [log D(x)]

+E.np. (o llog(1 = D(G(2)))]. 3)

We augment this with an L1 regularization term that en-
forces consistency with physical cloud properties, ensuring
synthesized images maintain both visual fidelity and meteo-
rological validity.

3.3 Validation and Quality Assessment

We validate the synthesized imagery using both quantitative
metrics and meteorological consistency checks. Structural
similarity (SSIM) and peak signal-to-noise ratio (PSNR) are
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used to assess image quality against held-out daytime observa-
tions. More importantly, we ensure that the synthesized cloud
optical thickness values are consistent with atmospheric water
content and temperature profiles derived from physics-based
models.

Image Quality Metrics Implementation: We implement
comprehensive independent validation using multiple quanti-
tative measures. The Structural Similarity Index (SSIM) evalu-
ates perceptual quality by comparing luminance, contrast, and
structure:

(2412 1y + €1) (202 + C2)

SSIM(z, y) = €]
R T [C R Ry
where ., j1,, are mean pixel intensities, o2, 05 are vari-

ances, 0, is covariance, and c, co are stability constants. We
compute SSIM using 11 x 11 Gaussian windows with o = 1.5,
following standard implementation practices.

Peak Signal-to-Noise Ratio quantifies pixel-level fidelity:

MAX?
MSE

where MAX = 255 for 8-bit imagery and MSE is mean
squared error between synthesized and ground truth images.

We supplement these with Learned Perceptual Image Patch
Similarity (LPIPS), a perceptual metric that uses features from
a pre-trained VGG network to assess semantic similarity be-
yond pixel-level differences:

LPIPS(z,y) = Y wi||Fi(z) — Fi(y)ll3
l

PSNR = 10log, ( 5)

(6)

where Fj represents features from layer [ and w; are learned
weights.

Meteorological Consistency Validation: Beyond visual
metrics, we validate meteorological consistency through
domain-specific measures:

Cloud Edge Detection Accuracy: We apply Canny edge
detection to both synthesized and reference imagery, com-
puting the percentage of detected cloud boundaries that align
within 2-pixel tolerance:

Aligned Edge Pixels
Total Detected Edge Pixels

Edge Accuracy = x 100% (7)

Optical Thickness Consistency: Synthesized visible im-
agery should maintain consistent relationships with IR-derived
cloud properties. We validate this by comparing retrieved op-

tical thickness from synthesized imagery with physics-based

calculations:
1 Iobs
Tyis = — 111
Iy

where I, is observed radiance and I is clear-sky radiance.
Temporal Coherence: We evaluate frame-to-frame consis-
tency by computing the temporal derivative of cloud features:

®)

1 N-1
C’temporal =1- m ; ||It+1 - It”% ©)

Independent Validation Protocol: To ensure independent
evaluation, we employ strict temporal separation:

1. Training Set: October 2006 - September 2015 (9 years)
2. Validation Set: October 2015 - March 2016 (6 months)

3. Test Set: October 2016 - March 2017 (6 months)

No temporal overlap exists between sets. Validation occurs
on complete nighttime periods (sunset to sunrise) when ground
truth visible imagery transitions from available to unavailable
to available again, allowing direct comparison of synthesized
vs. actual morning imagery.

For each test case, we: 1. Use only IR/near-IR data
from sunset onwards 2. Generate complete visible sequences
through the night 3. Compare synthesized dawn imagery with
actual dawn observations 4. Validate that synthesized se-
quences maintain meteorological consistency with concurrent
atmospheric soundings

Cross-Validation Results: Table 2 presents comprehensive
validation results across different atmospheric conditions.
Mean SSIM of 0.82 £ 0.08 indicates strong structural simi-
larity, while PSNR values of 25.8 4= 3.4 dB exceed typical re-
quirements for meteorological applications (> 20 dB). LPIPS
scores below 0.2 demonstrate semantic consistency with natu-
ral imagery.

Critically, cloud edge detection accuracy of 84.7% ensures
that precipitation-relevant cloud boundaries are preserved.
Optical thickness validation shows correlation of r = 0.91 with
physics-based retrievals, confirming that synthesized imagery
maintains quantitative meteorological relationships essential
for downstream prediction.

Our synthesis pipeline generates temporally complete
multi-spectral sequences at 15-minute intervals, converting
fragmented observations into continuous datasets suitable for
deep learning—based prediction. These complete sequences
capture the full evolution of lake-effect cloud systems—from
their initial formation over warm lake waters to the develop-
ment of mature snow bands—providing the temporal context
essential for accurate forecasting.

3.4 Integration with Prediction Framework

The synthesized multi-spectral sequences serve as the primary
input to our hybrid prediction model (detailed in Section 4).
As shown in Figure 2, our pipeline ensures temporal continuity
across all spectral bands, allowing the subsequent ConvLSTM
and physics-informed components to fully leverage the com-
plete atmospheric evolution. This data completeness is partic-
ularly critical for capturing the rapid transitions characteristic
of lake-effect precipitation, where missing even a few hours of
observations can significantly degrade forecast accuracy.



Journal of Emerging Applied Artificial Intelligence (JEAAI)

B

z §

£ g 2 s oY

2 é PatchGAN o ] (

2 Visible [gaps] @ Complete Multi- E Feature fusion

& Near-IR[gaps] > & Generator (U-Net+Skip) Spectral dapti ing (a)

H IR [complet = (EJE0D 3 gional i

f plete] E| | Discriminator (Patch) g Regional targeting

E s 2

= 7] A J

ﬁ = S & -

2 §
» S. Output
E s a 4 D 24-hour forecast
13 ; Wind (U,V) § Mass conservation 48-hour forecast
2|5 p e = Heat/moisture flux |——
= E Humidity 3 Atmospheric stability 72-hour forecast
52 a 8 v [High-res in target regions: 500m]
z R —
H
° .

:g: § ( Y

2 Surface T = 4-frame sequences

E Ice Cover > |E Temporal patterns ~ ——

K Depth g Hidden states H_t

H
3 3 AN J

Figure 4: Complete hybrid architecture for lake-effect snow prediction. The framework integrates: (1) synthesized multi-
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and lake data, and (4) enhanced MetNet-3 with adaptive regional targeting.

4 Hybrid Deep Learning Framework
for Lake-Effect Snow Prediction

This section introduces our hybrid deep learning framework,
which integrates synthesized multi-spectral imagery (from
Section 3) with physics-informed neural networks to enable
accurate lake-effect snow prediction. Our approach addresses
the limitations of both traditional numerical weather predic-
tion (NWP) models and purely data-driven methods by com-
bining temporal pattern recognition, physical constraints, and
adaptive spatial targeting. Figure 4 illustrates the complete ar-
chitecture.

4.1 Temporal Feature Extraction with ConvL-
STM

The synthesized multi-spectral satellite sequences contain rich
spatiotemporal information about evolving cloud systems. To
extract temporal features while preserving spatial structure,
we employ Convolutional LSTM (ConvLSTM) networks—a
variant of LSTM that replaces fully connected operations with
convolutions to handle spatiotemporal data:
Xt _ {){};is7 X;’LGGT-IR7 XtIR} (10)
where X, represents the complete multi-spectral input at
time ¢, now including synthesized data for all bands. The Con-
vLSTM processes sequential observations at 15-minute inter-
vals:

H; = ConvLSTM(X;—3a¢, Xi—2at, Xi—ae, X¢)  (11)

This architecture aggregates four consecutive frames (one
hour of observations) into a single representation H; that cap-
tures atmospheric dynamics. The ConvLSTM’s gated recur-
rent structure preserves critical temporal patterns:

Ct = ft O) Ct—l + it O) tanh(ch * Xt + th * Ht—l + bc)

(12)

where C,; is the cell state, f; and i; are forget and input gates,

® denotes element-wise multiplication, and * represents con-

volution. This formulation enables the model to learn which

temporal patterns are most predictive of lake-effect snow de-
velopment.

4.2 Physics-Informed Enhancement of MetNet-
3

While ConvLSTM effectively captures visual patterns from
satellite imagery, accurately predicting lake-effect snow also
requires incorporating physical constraints. To this end, we
enhance MetNet-3 by replacing its NWP inputs with a physics-
informed neural network (PINN) module that processes high-
resolution weather station and lake monitoring data.

4.2.1 Weather Station and Lake Data Integration

Traditional NWP models operate at a spatial resolution of
10-25 km, which is too coarse to resolve the narrow bands
characteristic of lake-effect snow. In contrast, weather station
networks provide measurements at 1-2 km resolution, with
temporal updates every 5 to 60 minutes, enabling a more ac-
curate representation of fine-scale atmospheric processes. We
integrate atmospheric measurements (wind components u, v,
temperature 7', humidity ¢) with lake parameters (surface tem-
perature Tj,., ice coverage, depth profiles) to capture air-water
interactions driving snow formation.

Data preprocessing involves temporal alignment through
cubic spline interpolation to match the 15-minute satellite ca-
dence, along with spatial interpolation to fill coverage gaps.
The combined input vector is then standardized using five-year
climatological statistics:

Xinput — Minput

13)

Xnormalized =
Oinput
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4.2.2 Physics-Informed Constraints

The PINN module enforces fundamental atmospheric laws by
incorporating differentiable operations directly into the loss
function. Figure 5 shows the module architecture.

We incorporate four key physical principles:

Mass Conservation: Ensures wind field continuity:

ou Ov
Viu=—+—=0 14
U= s * dy (14
Energy Exchange: Models lake-atmosphere heat flux:
Qn = CppU(Tlake - Tair) (15)

where @), is sensible heat flux (W/m?), ¢, is specific heat ca-
pacity of air (J/kg-K), p is air density (kg/m3), U is wind speed
(m/s), Tiake is lake surface temperature (K), and Ty, is air tem-
perature (K).

Moisture Transfer: Quantifies water vapor flux:

Qm = pU(QSat(,Tlake) - Qair) (16)

where @, is latent heat flux (W/m?2), gg(Tlake) is saturation
mixing ratio at lake surface temperature (kg/kg), and qy;, is air
mixing ratio (kg/kg).

Atmospheric Stability: Assesses convective potential:

orT

r—_2-
0z

17)
where I' is the atmospheric lapse rate (K/m) and z is height
above surface (m).

Explicit Physics Enforcement Implementation: Conser-
vation laws are enforced through automatic differentiation of
neural network outputs with respect to spatial coordinates. For
mass conservation, we compute spatial derivatives of the pre-
dicted wind components (u, v) using the chain rule:

Ou  Ou 00

ox 00 da’

ov v ol
dy ~ 980y 49

where 6 represents the neural network parameters. The di-
vergence constraint is computed at each grid point (x;, y;) dur-
ing forward pass:

Ou
ox

ov

— (19)
@) 9Y

Rmass (xi7 yj) =

(zi,y5)

Energy and moisture flux constraints are enforced by com-
paring neural network predictions with physically-derived val-
ues. For lake-atmosphere heat exchange, we compute the
residual:

RQh (:L‘zﬁ yj) = ‘Qh,pred(xiv yj) - CppU(Tlake - Tair)' (20)
where 1, pred is the network’s direct prediction and the sec-
ond term is computed from the fundamental heat flux equation
using predicted atmospheric variables.
The complete physics loss incorporates weighted residuals

across all constraint types:

Ephysics = Amass Z R?nass(xia yj) + )\Qh Z RQQh ($i7 yj)

1,7 7
+ )\Qm Z 7?’2Qm (l‘i, y]) + )\F Z R%(xl’ y])
2 2]

2D

The weights An.s = 0.1, Ag, = 0.05, Ag,, = 0.05,

and A\r = 0.02 are determined through grid search to balance

physics consistency with prediction accuracy. These weights

were selected by evaluating physics constraint violations and

prediction accuracy across different weight combinations on
the validation set.

Training vs. Inference Application: Physics constraints
are applied during both training and inference phases but serve
different purposes. During training, physics losses guide the
neural network to learn physically consistent representations
by penalizing violations of conservation laws. During infer-
ence, the trained network naturally respects these constraints
due to the learned physics-aware representations, though we
also monitor constraint violations as a model confidence in-
dicator. Severe physics violations during inference (e.g.,
mass conservation errors exceeding 0.1 s~1) trigger automatic
model fallback to ensemble predictions or flag unreliable fore-
casts for manual review.

To validate constraint enforcement, we monitor physics
residuals during training. Our validation results demonstrate
that mass conservation violations decrease from initial values
of 0.3 s~! to final values below 0.05 s~!, well within accept-
able meteorological tolerances.
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4.2.3 Adaptive Regional Targeting

Lake-effect snow impacts specific downwind regions defined
by atmospheric conditions. Our targeting mechanism dynam-
ically allocates computational resources based on a compos-
ite probability function that combines meteorological and ge-
ographical factors.

Lake-Effect Probability Function:
lake-effect probability as:

We define the regional

coarser grids in peripheral areas. The approach reduces total
computational requirements by 65-80% compared to uniform
high-resolution processing while maintaining prediction accu-
racy where it matters most.

4.3 Integrated Model Architecture

The complete framework integrates ConvLSTM temporal fea-
tures with physics-informed predictions within an enhanced
MetNet-3 architecture (Figure 6). This integration occurs at

P(LES,) = fua(AT, Wy, Wy, F, Hiny) X geeo( Dy, 0, Topoy,.) multiple levels:

(22)
The meteorological component fy, incorporates estab-
lished lake-effect formation criteria:

g = AT 13 W, ~10
met = 0 | O] 20 (5] 25
F—100 Hinw — 2
2
+013 200 + ay 3 > ( 3)

where o is the sigmoid activation function, and weights
a; = 04, as = 0.3, a3 = 0.2, ay = 0.1 reflect the relative
importance of each factor based on meteorological literature.
The temperature difference AT (°C) between lake surface and
850 mb level, wind speed Wy (kt), fetch distance F' (km), and
inversion height H;,, (km) are normalized using typical oper-
ational thresholds.
The geographical component gg, accounts for spatial fac-
tors affecting snow band development:
) (24)

* D, is distance from lake shore with decay length Lecay =
50 km

D T
. ) x cos?(6,.) x <1 + 8 }OIpOT

decay ref

Jgeo = €XP <_

where:

e 0, is angle between wind direction and shore-normal
(0° = perpendicular)

* Topo, is terrain elevation with reference height Hys =
300 m

e 3 = 0.3 represents topographic enhancement factor

Dynamic Resolution Allocation: Based on the computed
probability P(LES,.), we assign grid resolution according to:

500 m if P(LES,) > 0.7 (high probabilit
Resolution(r) = 1km if0.4 < P(LES,)

2km  if 0.2 < P(LES,) < 0.4 (low)

5km if P(LES,) < 0.2 (minimal)

(25)

This adaptive scheme concentrates computational resources
where lake-effect development is most likely, achieving 500-
meter resolution in critical downwind zones while using

1. Feature Fusion: ConvLSTM hidden states H; are con-
catenated with PINN embeddings before the MetNet-3
encoder.

. Adaptive Blending: A learnable parameter o balances
visual and physical pathways:

Ytinal = QYvisual + (1 - a)thysics (26)

3. Multi-Scale Predictions: The model generates forecasts
at 24, 48, and 72-hour horizons with appropriate resolu-
tion for each timescale.

4.4 Operational Implementation

The complete framework operates in two modes:

1. Training Mode: End-to-end optimization using histori-
cal data with complete satellite observations and ground
truth precipitation measurements. The composite loss
function balances prediction accuracy with physical con-
sistency:

‘Clotal = Epred + B‘Cphysics + 'V»Ctemporal (27)

2. Inference Mode: Real-time prediction using the trained
model with synthesized satellite data for missing bands.
The system processes incoming data streams at 15-

minute intervals and generates updated forecasts.

We employ curriculum learning during training, starting
with 24-hour predictions and progressively extending to 72
hours. This approach helps the model learn stable short-term
patterns before tackling the increased uncertainty of longer
horizons.

Algorithm 1 summarizes the operational decision logic for

ke-effect snow detection, incorporating key meteorological
hresholds. This algorithm serves multiple purposes during

<07 (moderate%oth training and inference: (1) training data labeling for su-

pervised learning, (2) inference-time resource allocation for
adaptive targeting, and (3) post-processing validation to ensure
predicted events meet meteorological criteria. The algorithm
is implemented within the physics-informed module to ensure
predictions align with established meteorological understand-
ing of lake-effect formation.

10
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Figure 6: Enhanced MetNet-3 architecture showing the integration of ConvLSTM features and physics-informed constraints.

Algorithm 1 Lake Effect Snow Detection and Classification

Require: TL, T850, T700, Him,, WS, Wd, F, t, Adv, D

Ensure: Lake-effect snow prediction (occurrence, type, intensity)
1: ATgso < Tr — Tss0; ATroo < T — Troo

o if ATss50 < 13°C or AT7po < 20 °C then return (FALSE, —,
-)

. end if

. if Hipy < 2km or H;p > 10 km then return (FALSE, —, -)

end if

. if W5 < 10kt or D > 80 km then return (FALSE, —, -)

end if

: if t < 12h and Advsso # "CAA” then return (FALSE, —, -)

: end if

: 6 < angle between wind and lake axis

. if W, < 10kt then T'ype < “Shore-Parallel”

: elseif W, > 15kt and 0 < 45° then T'ype < “Wind-Parallel”

. elseT'ype < "Mixed Mode”

. end if

: Intensity < f(ATsso0, F, Ws, Hiny) X terrain factor

. return (TRUE, T'ype, Intensity)

5 Evaluation

We evaluated our hybrid framework using an extensive 11-year
(2006-2017) dataset from Lake Michigan. We compared our
results with those from the physics-based FLake NWP model
and the deep learning—based MetNet-3 model. Our evaluation
addresses three key challenges: temporal data completeness
through synthesis, fine-scale spatial prediction accuracy, and
physical consistency in extended forecasts.

5.1 Dataset and Experimental Setup

5.1.1 Data Sources

Our evaluation leverages a comprehensive multi-modal dataset
spanning October 2006 through March 2017, focusing on
the winter months when lake-effect snow is most preva-

lent. The primary data source consists of GOES satellite im-
agery [24] providing visible (0.6-0.7 ym), near-infrared (1.3-
1.6 pm), and infrared (10.3-11.3 pm) bands at 15-minute in-
tervals. Though there are significant gaps in the visible and
near-IR bands during nighttime and adverse weather condi-
tions—precisely when severe events often develop—this high
temporal resolution captures the rapid evolution of lake-effect
cloud systems.

Ground-based observations come from 147 National
Weather Service stations [25] distributed within a 150-mile ra-
dius of Lake Michigan. These stations provide hourly mea-
surements of temperature, humidity, wind speed and direction,
pressure, and precipitation accumulation. The station density
varies from approximately one station per 100 km? near ur-
ban areas to one per 500 km? in rural regions, creating spatial
sampling challenges that our adaptive targeting mechanism ad-
dresses.

Lake surface conditions play a crucial role in lake-effect
development, monitored through GLERL'’s specialized Great
Lakes observing network [11, 12]. Five instrumented buoys
measure water temperature profiles at six depths (1, 5, 10, 15,
20, and 25 meters) along with wave height and surface me-
teorological conditions. During winter months when ice pre-
vents buoy deployment, we rely on coastal monitoring stations
and satellite-derived surface temperature estimates at 1.8 km
resolution. Ice coverage data, critical for determining avail-
able moisture sources, comes from daily MODIS imagery pro-
cessed by GLERL.

For ground truth validation, we employ NOAA’s Stage IV
precipitation analysis, which combines radar estimates with
rain gauge observations to produce quality-controlled precip-
itation fields at 4 km spatial and hourly temporal resolution.
This dataset has undergone extensive validation for lake-effect
events and provides reliable accumulation estimates even in
regions of complex terrain.

11
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5.1.2 Training Procedures and Implementation Details

Dataset Splitting Protocol: We employ strict temporal sep-
aration to ensure no data leakage between training, validation,
and test sets:

1. Training Set: October 2006 - September 2015 (9 years,
75% of data)

* 147,320 satellite image sequences (15-min inter-
vals)

¢ 78,840 weather station measurement sets

* 2,340 complete lake-effect events for model training

2. Validation Set: October 2015 - March 2016 (6 months,
12.5% of data)

* 17,280 satellite sequences for hyperparameter tun-
ing

e 8,760 weather observations for PINN constraint val-
idation

e 312 lake-effect events for intermediate evaluation

3. Test Set: October 2016 - March 2017 (6 months, 12.5%
of data)

* 17,280 satellite sequences for final evaluation
* 8,760 weather observations for physics validation

* 289 lake-effect events for performance assessment

The validation set size of 17,280 sequences represents ap-
proximately 12.5% of the total dataset, selected to ensure suf-
ficient diversity across different atmospheric conditions while
maintaining temporal separation. Selection criteria include:
(1) even distribution across winter months, (2) representation
of all lake-effect event types, and (3) inclusion of challenging
transition periods between synoptic and lake-effect precipita-
tion.

PatchGAN Training Configuration: The PatchGAN syn-
thesis model employs the following hyperparameters, deter-
mined through grid search on the validation set:

Architecture: U-Net generator with 8 downsam-
pling/upsampling layers

Discriminator: 70 x 70 PatchGAN with 5 convolutional
layers

Learning rates: Generator: 2 X 10~4, Discriminator:
2x 1074

Batch size: 16 (limited by GPU memory for 512 x 512
images)

Loss weights: Adversarial: 1.0, L1 reconstruction: 100.0
Optimizer: Adam with 5, = 0.5, 82 = 0.999

Training epochs: 200 with early stopping based on vali-
dation SSIM

Physics-Informed Training Details: The PINN module in-
corporates the following training parameters:

Physics constraint weights: )\, = 0.1, Ag, = 0.05,
AqQ,, = 0.05, A\r = 0.02

Gradient computation: Automatic differentiation with
2nd-order accuracy

Constraint evaluation:
training

Every 50 grid points during

Physics loss scheduling: Gradual increase from 0.01 to
full weights over first 20

Hybrid Model Training Protocol: The complete frame-
work follows a three-stage training approach:

Stage 1 (Pre-training): Train PatchGAN synthesis model
for 200 epochs using pairs of IR and visible imagery from day-
light hours. Convergence criterion: validation SSIM improve-
ment ; 0.001 for 10 consecutive epochs.

Stage 2 (PINN Integration): Initialize MetNet-3 backbone
with pre-trained weights and integrate PINN constraints. Train
for 150 epochs with curriculum learning: start with 24-hour
predictions, progressively extend to 72 hours. Learning rate:
1 x 10~* with cosine annealing.

Stage 3 (End-to-End Fine-tuning): Joint training of com-
plete pipeline for 50 epochs with reduced learning rate (5 x
1075).  Monitor physics constraint violations and adjust
weights if violations exceed tolerance (> 0.1 s~! for mass
conservation).

Computational Infrastructure: Training performed on 8x
NVIDIA A100 GPUs with 40GB memory each. Total training
time: 22.4 GPU-hours for complete pipeline. Data preprocess-
ing pipeline utilizes 32-core CPU cluster for parallel satellite
imagery processing and weather station data interpolation.

Convergence and Validation Criteria:

Early stopping: Validation CSI improvement j 0.005 for
15 consecutive epochs

Physics constraint monitoring: Mass conservation vio-
lations < 0.05 s~ !

Synthesis quality: Minimum validation SSIM ¢, 0.75 for
nighttime generation

Model checkpointing: Save best weights based on vali-
dation CSI every 10 epochs

Cross-validation: We further validate our temporal split
strategy using 5-fold cross-validation across different
year ranges to ensure the counterintuitive 24h—72h ac-
curacy pattern is not due to temporal overfitting or dataset
bias

12
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5.1.3 Evaluation Metrics

We employ a comprehensive suite of verification metrics stan-
dard in operational meteorology. The Critical Success Index
(CSI), defined as CSI = +Misse‘:i‘;alse ——, provides a bal-
anced measure of forecast accuracy that penalizes both missed
events and false alarms. This metric is particularly valuable for
rare events like harsh lake-effect snow, where a naive forecast
of ”no snow” would achieve high accuracy but zero utility.

The Probability of Detection (POD = %) measures
the fraction of observed events that were correctly forecast,
crucial for emergency management applications where miss-
ing an event has severe consequences. Complementing this,
the False Alarm Ratio (FAR = %) quantifies the
fraction of predicted events that did not occur, important for
maintaining public trust in warnings.

To assess spatial accuracy, we calculate the mean displace-
ment error between the predicted and observed snow band cen-
troids, measured in kilometers. This metric indicates whether
the model correctly identifies affected communities, which is
critical since lake-effect snow bands can produce drastically
different conditions just kilometers apart. Additionally, we
evaluate the structural similarity of the predicted snow bands
using the Fractions Skill Score (FSS) at multiple spatial scales
ranging from 1 to 50 kilometers.

We assess intensity prediction through the root mean square
error (RMSE) of 24-hour snowfall accumulations. We com-
pute the RMSE only at locations where the observed or pre-
dicted accumulation exceeds 2.5 cm, focusing on meaningful
events. Additionally, we compute quantile-specific errors to
understand model performance across the intensity spectrum
because accurate prediction of extreme accumulations (>30
cm) is more operationally important than predicting small ac-
cumulations.

5.1.4 Event Classification

Following the meteorological thresholds established in Algo-
rithm 1, we classify each 24-hour period into three categories
based on observed lake-effect snow characteristics. Non-LES
periods exhibit no organized lake-effect precipitation, though
synoptic snow may still occur. These periods serve as the neg-
ative class in our classification framework and constitute ap-
proximately 75% of winter days in our dataset.

Moderate LES events produce 1-6 inches (2.5-15 cm) of ac-
cumulation within 24 hours in localized bands meeting lake-
effect criteria: temperature differentials exceeding 13°C at 850
mb, fetch distances over 100 km, and organized linear precipi-
tation structures aligned with mean boundary layer flow. These
events, while disruptive to transportation, rarely threaten life
and property directly.

Harsh LES events generate accumulations exceeding 6
inches (15 cm) in 24 hours, often with snowfall rates surpass-
ing 2 inches per hour. These extreme events, comprising only
3% of our dataset, produce the most severe societal impacts
including highway closures, power outages, and structural col-
lapses. The December 2014 Buffalo event, which produced 60
inches of snow in 48 hours, exemplifies this category.

5.2 Impact of Data Synthesis on Prediction
Quality

The discontinuous nature of visible and near-IR satellite obser-
vations significantly impacts prediction model performance.
During a typical winter day, visible imagery is available for
only 7-8 hours (approximately 30% temporal coverage), creat-
ing critical gaps during evening and early morning hours when
lake-effect systems often intensify. Our PatchGAN synthesis
approach addresses this fundamental limitation by generating
physically consistent imagery for missing timesteps.

Table 1: Impact of data synthesis on 48-hour forecast accuracy

Training Data CSI POD FAR
Original (with gaps) | 0.42 0.58 041
Linear interpolation | 0.49 0.64 0.35
PatchGAN synthesis | 0.67 0.78 0.19

Table 1 demonstrates the dramatic improvement achieved
through intelligent data synthesis. Models trained on original
gapped data achieve only 0.42 CSI, as the discontinuous obser-
vations fail to capture critical atmospheric transitions. Simple
linear interpolation provides modest improvement (0.49 CSI)
but cannot represent the non-linear cloud evolution dynamics.
Our PatchGAN approach achieves 0.67 CSI—a 59% improve-
ment—>by learning the complex mapping between IR signa-
tures and visible/near-IR features.

The reduction in false alarm ratio from 0.41 to 0.19 is par-
ticularly noteworthy. Analysis reveals that gaps in visible im-
agery often coincide with rapid cloud development phases.
Without synthesis, models miss these critical transitions and
subsequently over-predict precipitation to compensate, gener-
ating numerous false alarms. The synthesized imagery cap-
tures cloud lifecycle evolution, enabling more precise precipi-
tation timing and location.

Table 2 reveals several important patterns in synthesis per-
formance across different atmospheric conditions and times.
The PatchGAN approach demonstrates robust performance
during evening transitions (SSIM 0.82-0.89), with the high-
est quality achieved when synthesizing clear-to-cloudy tran-
sitions. Performance naturally degrades as atmospheric com-
plexity increases, with stable stratiform conditions during deep
night achieving the best results (SSIM 0.91, PSNR 29.6 dB),
while challenging multi-band lake-effect scenarios show re-
duced but still acceptable quality (SSIM 0.76, PSNR 23.4 dB).
The most difficult cases involve convective complexes with
SSIM dropping to 0.71, though this still substantially exceeds
baseline methods. Notably, the meteorological consistency
metrics closely track image quality metrics—cloud edge ac-
curacy ranges from 72.6% for complex scenes to 93.4% for
stable conditions, validating that our approach preserves me-
teorologically meaningful features beyond mere visual simi-
larity. The pre-dawn period (04:00-06:00 UTC) shows inter-
mediate performance (SSIM 0.79-0.86), which is particularly
important as this coincides with rapid lake-effect development
phases. Compared to traditional approaches, our PatchGAN
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method achieves a 28% improvement in SSIM over linear in-
terpolation and 14% over optical flow methods, while nearly
doubling the cloud edge detection accuracy (84.7% vs. 58.4%
for linear interpolation). These improvements directly trans-
late to enhanced downstream prediction performance, as ac-
curate cloud structure representation during nighttime gaps
proves essential for capturing the evolution of lake-effect sys-
tems.

Table 2: Synthesis quality metrics for visible band generation
across different atmospheric conditions and times. Validation
performed on held-out nighttime periods during the 2016-2017
winter season.

Image Quality Metrics Meteorological Consistency

Atmospheric Condition | Time (UTC) \semvir—poNRT MAE] LPIPS] | Cloud Edge  Texture
(dB) Accuracy (%)  Similarity
Evening Transition Period (Sunset)

Clear to Cloudy 18:00-20:00 | 0.89 28.4 0.041 0.122 91.2 0.86

Partial Cloud Cover 18:00-20:00 | 0.85 26.8 0.053 0.148 87.5 0.83

Active Development 18:00-20:00 0.82 25.2 0.067 0.176 84.3 0.79

Deep Night Period

Stable Stratiform 00:00-04:00 | 0.91 29.6 0.035 0.108 93.4 0.89

Single Band LES 00:00-04:00 | 0.83 26.1 0.062 0.165 85.7 0.81

Multi-Band LES 00:00-04:00 | 0.76 23.4 0.084  0.213 782 0.74

Convective Complex 00:00-04:00 0.71 21.8 0.098 0.247 72.6 0.68
Pre-Dawn Development

Rapid Intensification 04:00-06:00 0.79 24.7 0.072 0.189 81.3 0.77

Band Evolution 04:00-06:00 | 0.81 253 0.068 0.171 83.6 0.80

Dissipating Phase 04:00-06:00 | 0.86 27.2 0.049 0.139 88.9 0.85
Baseline Comparisons

Linear Interpolation All 0.64 193 0.127 0.341 584 0.52

Optical Flow All 0.72 22.1 0.095 0.268 67.2 0.64

PatchGAN (Ours) All 0.82 258 0.063  0.168 84.7 0.80

5.3 Overall Forecasting Performance

Our comprehensive evaluation across multiple forecast hori-
zons reveals distinct performance characteristics for different
event types and lead times. Table 3 presents detailed accuracy
metrics, highlighting our model’s superior performance partic-
ularly for challenging harsh lake-effect events.

The most striking result is the improvement in harsh LES
prediction accuracy as forecast horizon extends. While all
models struggle with 24-hour harsh event prediction (27.1%
for our model vs. 12.5-15.8% for baselines), our approach
shows dramatic improvement at longer lead times, reaching
77.6% accuracy at 72 hours. This counterintuitive result re-
quires careful explanation, as it contradicts standard meteoro-
logical forecasting expectations where accuracy typically de-
grades with time.

This pattern emerges from the multi-scale nature of lake-
effect development and our evaluation methodology. For
harsh events, we distinguish between event occurrence pre-
diction (whether a harsh event will happen) versus precise
timing and location prediction. At 72-hour lead times, our
model successfully identifies the large-scale atmospheric pre-
cursors—deep troughs, sustained cold air advection patterns,
and favorable thermodynamic profiles—that are necessary but
not sufficient conditions for harsh lake-effect events. These
synoptic-scale patterns evolve predictably according to estab-
lished meteorological dynamics and are well-captured by our
physics-informed constraints.

However, at 24-hour lead times, accurate prediction re-
quires precise specification of mesoscale processes: exact

band placement, timing of intensification, and local wind con-
vergence patterns. These fine-scale details depend on chaotic
boundary-layer processes that remain fundamentally difficult
to predict, even with high-resolution data. Our approach thus
exhibits the seemingly paradoxical behavior of being more
successful at identifying that a harsh event will occur (72h)
than when and where exactly it will occur (24h).

To validate this is not overfitting, we conducted additional
analysis: (1) the pattern holds across independent test years,
(2) similar behavior appears in ensemble forecasts from opera-
tional models when evaluated for event occurrence vs. precise
timing, and (3) the improvement specifically targets the large-
scale pattern recognition capabilities of our ConvLSTM-PINN
architecture rather than memorization of specific events.

Our physics-informed approach captures these multiscale
interactions by combining ConvLSTM networks, which learn
synoptic evolution patterns, and PINN constraints, which en-
sure thermodynamic consistency. Unlike traditional NWP
models, such as FLake, which are limited by hydrostatic as-
sumptions and coarse resolution, our approach can simultane-
ously resolve both synoptic and mesoscale processes. Pure
ML approaches, such as MetNet-3, lack the physical con-
straints necessary to maintain realistic atmospheric evolution
over extended periods, resulting in degraded performance be-
yond 48 hours.

5.4 Spatial Accuracy and Coverage

The highly localized nature of lake-effect snow demands ex-
ceptional spatial prediction accuracy. Communities separated
by just 10 to 20 kilometers can experience vastly different con-
ditions, ranging from blue skies to blizzard conditions. This
makes precise band placement critical for public safety and
economic planning. Table 4 summarizes our model’s spatial
performance compared to existing approaches.

Our adaptive targeting mechanism enables variable reso-
lution from 500 meters in high-probability lake-effect zones
to 5 km in peripheral regions. This approach concentrates
computational resources where fine-scale dynamics matter
most—typically within 30 km of shorelines and areas of com-
plex terrain. The mean displacement error of 8.6 km represents
a 53% improvement over FLake NWP and 41% over MetNet-
3, translating to more accurate identification of affected com-
munities.

The extended inland coverage of up to 35.7 miles addresses
a critical gap in existing models. Lake-effect impacts often
extend far inland when strong boundary-layer winds carry
moisture-laden air over rising terrain. However, traditional
lake-focused models, such as FLake, rapidly lose accuracy
beyond 15 miles inland, where direct lake influence dimin-
ishes. Our approach combines high-resolution station data
with learned terrain-flow interactions to maintain accuracy.

5.5 Ablation Study

To understand the contribution of each architectural compo-
nent, we conduct systematic ablation experiments removing
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Table 3: Forecasting accuracy (%) for different event types and forecast windows

Forecast Window Hybrid ML FLake NWP MetNet-3
Non-LES Harsh LES Overall | Non-LES Harsh LES Overall | Non-LES Harsh LES  Overall
24 hours 93.9 27.1 87.4 47.7 12.5 423 50.7 15.8 453
48 hours 83.0 50.5 73.3 60.7 394 535 59.1 389 54.4
72 hours 84.1 77.6 81.3 78.4 50.7 66.5 75.2 48.5 64.1
Table 4: Spatial prediction metrics trained on gapped data.
_ PINN Enhancement Impact: Physics-informed con-
Model Resolution Covgrage Band Error straints provide moderate but consistent improvements, in-
(km)  (miles inland) (km) creasing baseline CSI from 0.39 to 0.48 (+23%). The PINN’s
FLake NWP 10-25 15 18.2 value becomes more pronounced at longer forecast horizons,
MetNet—3 4 25 14.7 where physics constraints prevent the accumulation of unphys-
Hybrid ML 0.5-5 35.7 8.6 ical predictions. At 72 hours, PINN-only achieves 0.41 CSI

individual elements while keeping others fixed. This analysis,
presented in Table 5, reveals the synergistic nature of our hy-
brid approach where components provide multiplicative rather
than merely additive benefits.

Table 5: Component contribution analysis (48-hour CSI)

Configuration CSI
Full model 0.67
Without PatchGAN synthesis | 0.42
Without PINN constraints 0.54
Without adaptive targeting 0.61
Without ConvLSTM temporal | 0.48
MetNet-3 only (baseline) 0.39

Detailed GAN vs PINN Component Analysis: To clarify
the individual and combined contributions of our two main
innovations, we conduct targeted experiments isolating the
PatchGAN synthesis stage from the PINN enhancement. Ta-
ble 6 presents comprehensive results across multiple metrics
and forecast horizons.

Table 6: Detailed ablation analysis: GAN synthesis vs PINN
constraints

Configuration 24-hour Forecast 72-hour Forecast
CSI POD FAR | CSI POD FAR
Baseline MetNet-3 039 052 047 | 031 043 0.53
+ GAN only 058 0.71 026 | 048 0.59 0.35
+ PINN only 048 0.61 035|041 054 042
+ GAN + PINN (Full) | 0.67 0.78 0.19 | 0.63 0.74 0.23

The results reveal distinct contribution patterns:

PatchGAN Synthesis Impact: Adding GAN synthesis
alone provides the largest single improvement, increasing 24-
hour CSI from 0.39 to 0.58 (+49%). This demonstrates that
temporal data completeness is the primary bottleneck in lake-
effect prediction. The False Alarm Ratio drops dramatically
from 0.47 to 0.26, indicating that continuous temporal cover-
age prevents the over-prediction artifacts that plague models

compared to 0.31 for baseline—a 32% improvement.

Synergistic Effects: The combination of GAN + PINN
achieves 0.67 CSI, exceeding the sum of individual contribu-
tions (0.58 + 0.09 = 0.67 vs expected 0.58 + 0.09 = 0.67).
More importantly, the False Alarm Ratio drops to 0.19, indi-
cating that physics constraints help distinguish meteorologi-
cally plausible patterns in the synthesized imagery from arti-
facts.

Component Interaction Analysis: We investigate why
GAN synthesis and PINN constraints exhibit synergistic rather
than merely additive effects. Our analysis reveals how predic-
tion accuracy varies as a function of data completeness (GAN
quality) and physics constraint strength.

Three key interaction mechanisms emerge:

1. Enhanced Pattern Recognition: Complete temporal
sequences from GAN synthesis enable the PINN module to
learn more robust physical relationships. With gapped data,
the PINN cannot capture full atmospheric evolution cycles,
limiting its effectiveness.

2. Artifact Suppression: Physics constraints help fil-
ter meteorologically implausible features in synthesized im-
agery. Without PINN validation, GAN artifacts can propagate
through the prediction pipeline, generating false alarms.

3. Temporal Consistency: The PINN’s energy and mass
conservation constraints ensure that synthesized sequences
maintain physical continuity across day-night transitions, crit-
ical for accurate overnight prediction.

Computational Cost Analysis: Table 7 breaks down the
computational overhead of each component:

Table 7: Computational cost breakdown per 72-hour forecast

Component Training Inference | Memory
(GPU-hours) (seconds) (GB)

Baseline MetNet-3 18.2 83 16.4

+ PatchGAN synthesis +2.8 +4.2 +5.1

+ PINN constraints +1.4 +2.8 +2.9

Full model 224 15.3 24.4
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The GAN synthesis adds modest computational overhead
(25% increase in training time) but provides the largest ac-
curacy gains. PINN constraints are computationally efficient,
adding only 15

Removing PatchGAN synthesis causes the most dramatic
performance degradation (0.67 to 0.42 CSI), confirming that
continuous temporal coverage is fundamental to accurate pre-
diction. The model without synthesis fails to capture overnight
cloud development, missing the critical moisture accumulation
phase that precedes morning precipitation onset.

Physics-informed constraints contribute a 24% performance
improvement (0.54 to 0.67 CSI), validating our hypothesis that
incorporating fundamental atmospheric laws enhances predic-
tion even with extensive training data. The PINN module
particularly improves predictions during unusual atmospheric
conditions poorly represented in the training set, such as ex-
treme temperature inversions or anomalous wind shear pro-
files.

Adaptive targeting provides a 10% accuracy improvement
while reducing computational cost by 70%. Without target-
ing, uniform high-resolution processing wastes resources on
regions with negligible lake-effect probability while poten-
tially under-resolving critical areas due to memory constraints.
The ConvLSTM temporal processing proves essential for cap-
turing cloud evolution dynamics, with its removal degrading
performance to near-baseline levels.

5.6 Physics Constraint Validation

Beyond improving accuracy, our physics-informed approach
ensures meteorological consistency in predictions—a criti-
cal requirement for operational credibility and model inter-
pretability. We validate four key physical constraints through
comparison with independent observations and theoretical ex-
pectations.

Conservation of mass, enforced through the divergence-
free wind constraint, shows marked improvement over uncon-
strained models. Analysis of 500 predicted wind fields reveals
mean divergence of 0.03 s~ for our approach compared to
0.18 s~ ! for standard MetNet-3, with maximum violations re-
duced by 84%. This physical consistency prevents unrealistic
atmospheric features like spontaneous convergence zones that
plague purely data-driven approaches.

Lake-atmosphere heat flux predictions demonstrate strong
correlation (r = 0.87) with eddy covariance measurements
from research buoys, compared to r = 0.71 for parameterized
fluxes in FLake NWP. The PINN constraints correctly capture
the non-linear relationship between air-lake temperature dif-
ference and heat transfer, including stability-dependent effects
missed by bulk parameterizations. During strong cold air out-
breaks, our model predicts heat fluxes within 15% of obser-
vations, enabling accurate estimation of available energy for
cloud development.

5.7 Case Studies

Three representative events illustrate our model’s superior per-
formance across different lake-effect morphologies. The De-
cember 2014 Buffalo event exemplifies a long-fetch single-
band case, where sustained westerly flow produced a narrow
but intense snow band affecting southern Buffalo suburbs. Our
model correctly predicted the band’s position within 5 km and
peak accumulations within 20% of observed values (52 vs. 60
inches), while FLake NWP displaced the band 25 km north-
ward into downtown Buffalo—a critical error affecting emer-
gency response deployment.

The multi-band event in January 2015 challenged models
due to the complex interactions between the shore-parallel and
wind-parallel modes as the wind direction shifted through-
out the event. Our adaptive resolution successfully captured
the transition period during which both modes coexisted, ac-
curately predicting the dual-maximum accumulation pattern.
However, MetNet-3, lacking physics constraints, predicted a
single, broad area of moderate snowfall. It missed the local-
ized, intense bands that paralyzed specific transportation cor-
ridors.

The February 2016 shore-parallel case showed that our
model can handle weak-flow scenarios, which traditional bulk
parameterizations cannot. With winds under 10 knots, a nar-
row but persistent band formed along the eastern shore, driven
primarily by land-breeze convergence. The high-resolution
targeting correctly identified this mesoscale circulation and
predicted band formation three hours before precipitation on-
set, which is a critical lead time for aviation operations at af-
fected airports.

5.8 Computational Performance

Our framework achieves superior accuracy while maintain-
ing computational efficiency suitable for operational deploy-
ment. Training on 11 years of data takes 22 hours on a sin-
gle NVIDIA A100 GPU. This is much faster than the 71
hours required by FLake NWP’s data assimilation and the 100
hours required by MetNet-3’s larger architecture. Thanks to its
modular design, the framework can be updated incrementally
as new data becomes available. Incorporating an additional
month of observations, for example, requires only two hours.

The inference time meets operational requirements, execut-
ing a complete 72-hour forecast in 15 seconds on standard
hardware. The adaptive targeting mechanism significantly
contributes to this efficiency by processing high-resolution
predictions only where needed. Memory requirements peak
at 24 GB during inference, enabling deployment on current-
generation operational systems without specialized hardware.

5.9 Discussion and Limitations

Our evaluation reveals that the combination of data synthesis,
temporal pattern recognition, physical constraints, and adap-
tive resolution successfully addresses the key challenges in
predicting lake-effect snow. The framework’s superior per-
formance does not stem from any single innovation, but rather
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from the careful integration of complementary approaches that
address different aspects of the prediction problem.

There are several limitations that remain for future work.
Complex terrain interactions, particularly in the Michigan Up-
per Peninsula, sometimes produce precipitation patterns that
our model has difficulty capturing. The fixed 11-year training
period may not fully represent climate variability, suggesting
the benefits of continual learning approaches. Transitions be-
tween lake-effect and synoptic snow remain challenging be-
cause these events involve interactions across scales that are
beyond the scope of our current modeling framework.

Despite these limitations, our hybrid approach is a signifi-
cant advancement in lake-effect snow prediction. It provides
accurate, physically consistent forecasts at the required spatial
and temporal scales for effective hazard mitigation.

6 Conclusion

This work demonstrates that solving fundamental data limi-
tations can unlock the full potential of physics-informed ma-
chine learning for environmental prediction. By addressing
the temporal discontinuity in satellite observations—a chal-
lenge that has constrained lake-effect snow forecasting for
decades—we enable improved prediction models that combine
physical understanding with data-driven learning.

Our two-stage framework represents a novel approach to
handling observational gaps in meteorology. Rather than de-
veloping increasingly sophisticated models to work around
missing data, we first reconstruct complete observational se-
quences through cross-spectral synthesis. The PatchGAN ap-
proach achieves remarkable fidelity in generating nighttime
visible and near-infrared imagery from continuous infrared ob-
servations, maintaining both visual quality (SSIM 0.82) and
meteorological consistency. This synthesis alone improves
downstream prediction accuracy by 59%, validating our hy-
pothesis that temporal completeness is essential for capturing
atmospheric evolution.

Based on full observations, our physics-informed architec-
ture provides surprising insights into lake-effect predictabil-
ity. The dramatic improvement in harsh event detection, from
27.1% at 24 hours to 77.6% at 72 hours, challenges the no-
tion that forecasts degrade over time. Our findings suggest
that severe lake-effect events are preceded by large-scale atmo-
spheric patterns that become increasingly apparent over multi-
day timescales, but only when models have access to con-
tinuous observations that capture these evolving signatures.
Integrating conservation laws and thermodynamic constraints
through the PINN module ensures that these extended predic-
tions remain physically plausible, which addresses a key limi-
tation of purely statistical approaches.

From an operational perspective, our framework provides
weather services and emergency management with immediate
benefits. The adaptive spatial targeting reduces computational
requirements by 65-80% while maintaining a 500-meter res-
olution in critical zones. This makes deployment feasible on
current operational infrastructure. With a mean spatial error of

8.6 km, predictions accurately identify affected communities,
which is crucial for public safety when neighboring towns can
experience drastically different conditions. The extension of
reliable forecasts from 18 to 72 hours gives emergency man-
agers more time to prepare for severe events.

Several limitations warrant acknowledgment and future in-
vestigation. First, our framework exhibits reduced perfor-
mance when transitioning between lake-effect and synoptic
snow, as scale interactions surpass the current modeling ca-
pabilities. The fixed training period may not fully capture cli-
mate variability, suggesting the benefits of continual learning
approaches. Complex terrain effects, particularly in the Michi-
gan Upper Peninsula, occasionally produce precipitation pat-
terns that our model struggles to predict accurately. Addition-
ally, while our synthesis approach works well for the consid-
ered spectral bands, extending it to other observational modal-
ities requires further research.

Generalizability Across the Great Lakes Region: Our
evaluation focuses exclusively on Lake Michigan, which lim-
its claims about generalizability to other Great Lakes or similar
water bodies worldwide. Lake-effect dynamics exhibit signifi-
cant variation across the Great Lakes system due to differences
in:

Lake geometry: Lake Michigan’s north-south orienta-
tion creates different fetch patterns compared to the east-
west elongation of Lake Erie or the massive size of Lake
Superior

Surrounding topography: The relatively flat terrain
around Lake Michigan differs markedly from the com-
plex topography around Lake Ontario or the Appalachian
influences on Lake Erie

Urban heat islands: The Chicago metropolitan area sig-
nificantly affects local atmospheric conditions in ways
that may not apply to other lake regions

Climatological patterns: Each lake experiences differ-
ent seasonal ice coverage, temperature regimes, and pre-
vailing wind patterns

While our physics-informed constraints should transfer
across lakes (fundamental atmospheric laws remain constant),
the learned patterns in both the PatchGAN synthesis and Con-
vLSTM components may be lake-specific. The adaptive tar-
geting thresholds (o weights, decay lengths, resolution break-
points) were optimized for Lake Michigan’s characteristics
and would likely require recalibration for other lakes.

Initial analysis suggests that Lakes Huron and Superior,
with similar size scales and surrounding terrain, might re-
quire minimal adaptation. However, Lakes Erie and Ontario,
with their distinct morphologies and more complex surround-
ing topography, could necessitate substantial model retrain-
ing. Transfer learning approaches could potentially reduce the
data requirements for adapting to new lakes, but this remains
untested.
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Regional Climate Considerations: Our 11-year training
period (2006-2017) may not fully capture the range of climate
variability affecting lake-effect patterns. Longer-term climate
shifts, such as changing ice coverage patterns due to warm-
ing temperatures or evolving storm tracks, could impact model
performance. The framework would benefit from continual
learning capabilities that adapt to changing climate conditions
while preserving learned physical relationships.

Looking ahead, this work suggests several promising re-
search directions. The success of cross-spectral synthesis sug-
gests that similar approaches could address observational gaps
in other remote sensing applications, ranging from wildfire
monitoring to agricultural assessment. The framework’s ar-
chitecture can be naturally extended to other Great Lakes or
similar bodies of water, though transfer learning strategies still
need to be developed. Integrating the framework with en-
semble prediction systems could quantify uncertainty in the
synthesis and prediction stages. Most intriguingly, the coun-
terintuitive improvement in long-range harsh event prediction
merits deeper investigation into the atmospheric dynamics en-
abling this extended predictability.

Beyond its technical contributions, this work highlights the
importance of challenging fundamental assumptions in envi-
ronmental prediction. The long-standing acceptance of night-
time observational gaps as an unavoidable limitation has led
to increasingly complex workarounds. Addressing this root
cause directly improves lake-effect snow prediction and es-
tablishes a template for solving other challenging forecasting
problems where sparse observations, fine-scale dynamics, and
physical constraints intersect. As climate change intensifies
extreme weather events, a holistic approach combining data
synthesis, physics-informed learning, and adaptive computa-
tion will be critical to protecting vulnerable communities.
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Abstract—In this paper, we address the challenge of improving
hazard detection in autonomous driving systems, particularly in
scenarios where labeled data is scarce or unavailable. This issue
is critical in real-world applications, where diverse and unpre-
dictable driving situations make it difficult to label every poten-
tial hazard accurately. Recently, the Challenge of Out-of-Label
(COOOL) benchmark has been introduced at WACV2025 to pro-
mote research on this challenge. To tackle this issue, we present
a novel method that integrates a Bootstrapping Language-Image
Pretraining (BLIP)-based scenario generation framework with
a threshold-based hazard scoring system, thereby enhancing
both scenario comprehension and detection accuracy within the
benchmark. By incorporating robust driver state logic, bounding
box analysis, and BLIP-generated scenario descriptions, our
method initially achieves a 40% performance score. Building
upon this foundation, we further integrate depth maps and
optical flow to improve hazardous object discrimination, resulting
in an additional 20% performance improvement. This culminates
in a final score of 63% on the public benchmark leaderboard
and 50% on the private leaderboard. To foster continued ad-
vancements in autonomous driving research, we will make all
code and visualization tools publicly available.

Index Terms—out-of-label, optical flow, depth maps, BLIP,
image caption,hazard detection

I. INTRODUCTION

With the rapid advancement of computer vision technolo-
gies [1]-[4], perception tasks in autonomous driving have
evolved from fundamental 2D object detection [5]-[7], optical
flow [8]-[10], and depth estimation [11]-[13] to more complex
scene understanding through video anomaly detection. Recent
breakthroughs in large-language Models (LLMs) [14]-[16]and
Vision-Language Models(VLMs) [17]-[19] have demonstrated
remarkable zero-shot reasoning capabilities, enabling LLMs to
generate high-quality semantic interpretations without domain-
specific training. These features give VLMs unique advan-
tages in autonomous driving systems: effectively detecting
road obstacles and identifying potential risk zones in driving
scenarios through interpretable semantic descriptions. Such
multi-modal (image to text) provides intuitive risk assessment
references by establishing a bidirectional mapping between
drive sense understanding and natural language generation,
significantly enhancing decision-making transparency and reli-
ability. Consequently, semi-supervised learning,few-shot learn-
ing, and zero-shot generative with multi-modal perception

House traveling along the road

Fig. 1. A simplified result of our approach is displayed on the selected frame
from one of the test videos. The colors represent the hazard state of each
object: red indicates hazardous objects, and green indicates safe objects.

technologies have emerged as crucial research directions for
improving driver-sense adaptability and safety redundancy
in autonomous driving systems. While existing autonomous
driving systems demonstrate remarkable proficiency in detect-
ing predefined object categories (e.g., vehicles, pedestrians)
within conventional benchmarks like KITTI, nuScenes and
Waymo, their reliance on closed-set annotation paradigms
creates critical safety blind spots. Current datasets predomi-
nantly focus on nominal driving scenarios, where over 98% of
annotated objects fall within 20 common categories according
to nuScenes statistics. According to NHTSA reports, this
paradigm leaves systems fundamentally unprepared for Out-
of-Distribution (OOD) hazards - unexpected objects and sce-
narios that account for 62% of real-world collision incidents.
Such vulnerabilities manifest particularly in handling exotic
biological entities (e.g., kangaroos crossing Australian high-
ways), amorphous obstacles (e.g., wind-blown debris), and
edge-case interactions (e.g., pedestrians emerging from visual
occlusions), where traditional perception pipelines frequently
fail to trigger appropriate emergency responses.

This study is based on the “Out-of-Label Hazards in
Autonomous Driving (COOOL)” benchmark [20], a multi-
modal dataset of high-resolution videos captured from real-
world driving scenarios. COOOL is specifically designed to
address the critical but underexplored challenge of detecting
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out-of-distribution (OOD) hazards, which are categorized into
three types: 1) Exotic biological threats (e.g., kangaroos,
wild boars), 2) Unpredictable inanimate hazards (e.g., drifting
plastic bags, smoke occlusion), and 3) Abnormal interactions
with standard objects (e.g., erratic pedestrians). To deal with
this problem, we propose the following methods:

o Multi-modal Hazard Filtering: Establish a priori con-
ditions and optical flow and depth estimation to identify
potential hazards based on motion discontinuity and spa-
tial proximity.

Zero-Shot Categorization: Use a CLIP-driven big model
to classify filtered objects into predefined risk tiers with-
out requiring task-specific training.

Causal Scene Interpretation: Employ Vision Language
Models (VLMs) to generate spatiotemporally grounded
captions that explain the evolution of hazards (e.g., “A
dog crossing the street”).

II. RELATED WORK
A. Optical Flow

Optical flow characterizes the perceived motion patterns
between consecutive frames, representing the displacement
vector field induced by relative motion between the observer
and scene elements. This spatiotemporal signal provides criti-
cal cues for anticipating emerging threats in dynamic environ-
ments. Recent advancements in autonomous safety systems
have increasingly leveraged optical flow for enhanced risk
prediction and collision awareness. FlowNet 2.0 [21]estab-
lished significant improvements in both estimation accuracy
and computational efficiency, enabling real-time extraction
of dense motion vectors. Building upon this [22] integrated
optical flow with Occupancy Networks to predict the trajecto-
ries of dynamic obstacles, thus generating collision-free paths
by incorporating vehicle kinematic constraints. In a similar
vein, [23] developed a model that predicts Time to Collision
(TTC) and optical flow from monocular images, identifying
potential collision areas through feature clustering and motion
analysis. Their model uses optical flow and TTC within a 65ms
temporal window to assess collision risk. To further address
challenges such as varying illumination, Wang et al. [24] fused
monocular optical flow with stereo depth cues, successfully
reducing optical flow errors by 50% compared to previous
unsupervised methods.

B. Zero-Shot Image Classification

Recent advancements in vision-language pretraining have
transformed open-vocabulary zero-shot learning. Pioneered
by OpenAl’s CLIP [25], which aligns 400 million image-
text pairs into a unified embedding space through contrastive
learning, this approach enables semantic transfer to unseen
categories via natural language prompts. Building on this,
ALIGN [26] further enhances multi-modal alignment by train-
ing on noisy web-scale data (1.8 billion pairs), demonstrating
improved robustness in cross-modal retrieval tasks. In object
detection, VILD [27] innovatively distills knowledge from
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CLIP-style classifiers into two-stage detectors like Mask R-
CNN, effectively detecting rare categories using only base-
class annotations. This highlights the possibility of open-
vocabulary detection without relying on novel-class train-
ing data. Prompt engineering has also emerged as a key
enabler for zero-shot adaptation. Methods like CoOp [28]
optimize learnable context vectors to guide pre-trained vision
language models (VLMs) toward downstream tasks, leading
to a noticeable improvement in performance across multiple
datasets. Further works like CoCoOp [18] introduced condi-
tional prompt tuning, dynamically adjusting prompts based
on image content, significantly reducing the domain gap on
unseen classes.

C. Vision-Larger Language Models

The success of Vision Transformers (ViT) [29] and large-
language Models (LLMs) has led to advances in cross-modal
learning. ViT is used to extract hierarchical image features
and then mapped into the textual embedding space of LLMs
through alignment layers. For example, LLaVA [30]shows how
aligning ViT outputs (D=1024) with LLM token dimensions
(D=4096) using linear transformation enables visual question
answering with minimal instruction tuning. Parameter-efficient
fine-tuning [31] techniques have become essential for effi-
ciently adapting models to new tasks. These include adapter-
based tuning, which uses lightweight modules to adapt models
with minimal parameter changes (e.g., VL-Adapter [32] tunes
less than 1% of the total parameters), and Q-Former mech-
anisms, like those in BLIP [33], [34], where query vectors
attend to key visual regions, speeding up convergence. These
methods can deal with many challenges, including bridging the
modality gap between ViT’s grid-based features and LLM’s se-
quential embeddings and ensuring efficient knowledge transfer
by updating only the adapter parameters, making them suitable
for tasks like autonomous hazard perception.

III. METHOD

As Fig 2,our approach begins by utilizing a priori knowl-
edge to screen potential hazardous objects based on optical
flow and depth information. These objects are then identified
and categorized through zero-shot image captioning, allowing
the model to recognize and classify hazards without requiring
task-specific training. Finally, we use a vision language model
to generate captions and categorize dangerous objects in each
frame.

A. Multi-modal Hazard Filtering

We establish a prior assumption based on the intuition that
larger and closer objects pose a greater danger. we design a
hazard scoring mechanism defined as

bounding box_size
score =

dist_to_center M
where objects with higher scores are considered more haz-
ardous. This integrated scoring system enhances the accuracy
of hazard assessment by prioritizing the highest-scoring object
as the primary threat. We employ optical flow estimation for
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Fig. 2. Illustration of the proposed framework. BLIP, an advanced visual language model, is employed for image matching and captioning tasks to identify
objects, determine potential hazards, and generate descriptions. Green boxes indicate bounding boxes with track IDs within the COOOL dataset.

TABLE I
COMPARISON OF PROCESSING TIMES FOR THE LINEAR REGRESSION AND
THE SCORING MECHANISM IN DIFFERENT PROCESSING MODES ON THE
COOOL DATASET.

Method Processing Mode Single Frame Total Time
Time
Linear Single-threaded CPU 1 ms 4,320 s
ca GPU Accelerated 0.01 ms 432
Scorine mechanism Single-threaded CPU 0.01 ms 432s
& GPU Accelerated 0.0001 ms 0.432s

small objects and animals to capture how objects change
instantaneously between consecutive frames. In dynamic envi-
ronments, the optical flow field assists in identifying hazardous
regions within a scene by scoring motion every five frames to
assess whether the current driving state is potentially danger-
ous. Additionally, we incorporate monocular depth estimation
in low-light conditions to predict scene depth. By analyzing
variations in the depth map, we effectively distinguish moving
objects and identify potential hazards, thereby enhancing the
accuracy of hazard detection. The visualization of optical flow
estimation and depth estimation is shown in Fig 4.

B. Zero-shot Image classification

For the identified hazardous objects, we extract them using
the bounding boxes (bounding box) provided in the dataset
and perform zero-shot image classification. However, relying
solely on the bounding box may result in a loss of contex-
tual information, making classification more challenging. To
address this issue, we apply a 20% padding around the target
image, ensuring that contextual cues are incorporated into the
zero-shot model. For classification, we utilize OpenAI’s CLIP
ViT-B/16 [25] model and select the top 10 predicted categories
with the highest probabilities as the final results.

C. Image Caption

We first employed a zero-shot classification method to
process the input images, thereby identifying potentially haz-
ardous objects in the scenes. Next, we used the BLIP model to
generate detailed descriptions of the classified hazard objects.
This model leverages the strengths of both visual information
and large-language models to automatically image caption
that accurately correspond to the characteristics of the haz-
ardous objects. Meanwhile, by utilizing the frame-level label
information provided in the dataset, we precisely located the
keyframes containing the hazardous objects and conducted
scene understanding on these frames. Based on the scene
analysis results, we further examined the specific labels and
attributes of the hazardous objects to formulate more accurate
descriptions.

IV. DATASET

A. Annotation

The COOOL benchmark, entitled ”Challenge Of Out-Of-
Label” in Autonomous Driving, comprises 200 high-resolution
dashcam videos that have been meticulously annotated by
human labelers. The objective of this benchmark is to identify
objects of interest and potential roadway hazards in Figure 1 .
The range of potential hazards is extensive, including but not
limited to exotic animals (e.g., birds, houses, dogs), unusual
or unpredictable objects (e.g., plastic bags, smoke), and more
common roadway threats (e.g., cars, pedestrians).

The annotation files illustrated in support object detection
bounding boxes and follow the common object detection
annotation format, providing us with Zin, Tmax> Ymin, and
Ymax coordinates.
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Fig. 3. The above images present the visualization of optical flow estimation and depth estimation. (a) is the original frame from the dataset, (b) is the optical

flow estimation, and (c) is the depth map estimation.

TABLE II
CONSOLIDATED OBJECT DATA WITH OBJECT NAMES, ORDERED BY TRACK
ID. ATTRIBUTES ARE INTENTIONALLY LEFT AS EMPTY BRACES (“{}”) AT
THIS STAGE. THIS TABLE MERGES CHALLENGE OBJECT DATA AND
TRAFFIC SCENE DATA INTO ONE, WITH OBJECT NAMES ADDED.

Track ID b ding box (Bounding Box) Attributes Object
0 [183.62, 497.99, 211.16, 538.2] {3} traffic scene
1 [387.95, 457.78, 664.29, 686.97] {} challenge
2 [861.45, 576.45, 913.67, 648.1] {} challenge
3 [1047.92, 526.23, 1065.11, 542.62] {} traffic scene
4 [1050.36, 544.48, 1058.68, 567.64] {} traffic scene
5 [52.2, 656.7, 104.45, 700.1] {} challenge

B. Evaluation metrics

The COOOL competition evaluation metrics are intended to
balance the three aspects of hazard detection. Datasets provide
systems with a list of bounding boxes and the raw video, which
enables diverse approaches to these challenges. In order to
predict which potential hazards are genuinely hazardous, the
accuracy of predictions is computed based on the maximum
between the number of ground truth hazards and the number
of predicted hazards.Let Ny be the number of ground-truth
hazards, Nq be the number of predicted hazards, and Neorrect
be the number of correct hazard predictions. To penalize over-
prediction, we use:

2 Ncorrecl

~ v - 2
Ngl + Npred

Adetection =

By adding the total number of hazards to the total number
of guesses, algorithms that over-predict hazards are penalized,
thus avoiding the inflation of accuracy through lucky guesses.
For hazard descriptions, a similar approach is adopted, but
here we only check whether the class label is included in
the description, which is a binary evaluation. In Hazard
Description Accuracy,For each hazard description, define the
indicator function:

1, if hazard object will be explain,
di = 3

0, otherwise.

If there are N hazards to evaluate, then the description
accuracy is:

N
1
Adescription = N Z d; . 4

=1

In the context of driver reactions, accuracy is determined based
on the ground truth labels for each frame, thereby ascertaining
whether the driver has reacted to the hazard. The overall
evaluation metric is the macro-averaged accuracy of these
three measures. For Driver Reaction Accuracy Let R, be the
ground-truth reaction label at frame ¢, and Rt be the predicted
reaction label at frame ¢.Evaluated over T" frames, the reaction
accuracy is:

T
1 ~
Areaction - T tzzl 1{Rt = Rt} ) (5)
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where 1{-} is the indicator function (1 if true, O otherwise).
Overall Evaluation,The overall metric is the macro-average
of the three accuracies:

1
onerall =35 (Adetectian + Adescription + Areaction) . (6)

3

V. RESULTS AND DISCUSSION

In the benchmark has not yet provided relevant label infor-
mation, we use Kaggle’s evaluation metrics as an indicator of
our model’s performance. As TABLE III showed that the grad-
ual integration of various information modules significantly
enhanced the overall performance. Initially, when only the
CLIP model was employed, the system achieved an accuracy
of merely 23%, indicating that relying solely on single-modal
visual feature extraction is insufficient to capture the critical
information of hazardous objects in complex driving scenes.
By adopting the BLIP model, the accuracy slightly increased
to 26%, demonstrating that BLIP possesses certain advantages
in sense understanding and image captioning. However, it’s
still hard to capture the dynamic changes of the scene or
analyze them in low-light conditions. Furthermore, when the
BLIP model was combined with the Optical Flow estimation
and scoring method, the accuracy improved to 42%, which
validates the important role of incorporating motion informa-
tion to capture dynamic changes between consecutive frames
and enhance detection performance. Ultimately, our method
further integrated depth map information to provide an in-
depth depiction of the scene’s geometric structure, elevating
the reach to 63%. These results show the advantages of a
multi-modal information fusion process in hazardous object
detection.

TABLE III
PERFORMANCE COMPARISON OF METHODS WITH COMPONENT USAGE
INDICATED BY (V) .

Method CLIP BLIP Optical Flow depth map Score
v 23%

Baseline v 26%
v v 42%

Ours v v v 63%

Furthermore, the accuracy is further enhanced to 28% by
incorporating a speed threshold, which improves predictions
of driver state changes. By introducing a scoring strategy to
evaluate the danger level of objects based on the inverse of
their bounding box size and position relative to the center,
the accuracy reaches 63%. These findings underscore the im-
portance of integrating prior knowledge and adopting precise
danger assessment methods to enhance prediction accuracy. A
visualization of this approach is provided in Fig 4.

In addition, as shown in TABLE I, the threshold-based ap-
proach is 10 times faster than linear regression. This significant
improvement enables the model to detect potential hazards and
respond more quickly, which is a key factor in ensuring the
real-time performance and safety of the autonomous driving
system.

TABLE IV
COOOL CHALLENGE BENCHMARK

¢ Teammame  ATSNE A
1 Duong Anh Kiet 0.78453 0.57261
2 PivVa Al 0.68993 0.51772
3 Impish 0.63794 0.51596
4 Ours 0.63792 0.50599
5 Parisa Hatami 0.54599 0.48967
6  TeamCV 0.55705 0.44401
7 PMM_UTCU 0.43161 0.44020
8  Mahdi Abbariki 0.56956 0.37568
9  Nachiket Kamod 0.43368 0.31733
10 Peace.LU 0.34695 0.31639

VI. CONCLUSION AND FUTURE WORK

This paper presents the approach we adopted in the COOOL
Autonomous Driving Challenge, which requires the automatic
detection of hazardous objects in driving scenarios without
language annotations, as well as the generation of corre-
sponding natural language descriptions. This task imposes
stringent demands on existing vision-language models. To
tackle this challenge, we propose a BLIP-based solution that
integrates prior knowledge, optical flow, and depth estimation.
Furthermore, we implement a fine-tuning strategy for large-
language models by adjusting parameters such as vertex
sampling, temperature, and competition degree. These im-
provements effectively enhance the overall performance of the
model. Ultimately, our method significantly boosts accuracy,
achieving a rate of 63%.As the TABLE IV Since the official
paper for this competition has not yet been published, a
direct comparison with other methods is not currently possible.
However, our approach has demonstrated strong performance
in experiments, indicating its competitive potential for this
task.

In the future, we aim to explore advanced models such
as LLaMA [35] and GPT-4.0 [15]. We plan to leverage
chain-of-thought prompting to enhance the model’s infer-
ence capabilities, enabling deeper semantic understanding
and logical reasoning. Additionally, we intend to extend the
model’s capabilities to comprehend video data, allowing it
to capture dynamic information and temporal relationships in
driving scenarios. These advancements will further improve
the model’s performance and interpretability, contributing to
the safe development of autonomous driving technology.

REFERENCES

[1] C. Feng, B. Baci¢, and W. Li, “Sca-Istm: A deep learning approach
to golf swing analysis and performance enhancement,” in International
Conference on Neural Information Processing.  Springer, 2025, pp.
72-86.

B. Baci¢, C. Feng, and W. Li, “Jy61 imu sensor external validity: A
framework for advanced pedometer algorithm personalisation,” ISBS
Proceedings Archive, vol. 42, no. 1, p. 60, 2024.

J. Wang, S. Wang, and Y. Zhang, “Deep learning on medical image
analysis,” CAAI Transactions on Intelligence Technology, vol. 10, no. 1,
pp. 1-35, 2025.

Y. Zhong and S. H. Lee, “Gazesymcat: A symmetric cross-attention
transformer for robust gaze estimation under extreme head poses and
gaze variations,” Journal of Computational Design and Engineering,
vol. 12, no. 3, pp. 115-129, 2025.

[2]

[3]

[4]

24



201 24067/2:3
18973181

12

(ATl o Dl T

Fig. 4. Sample predictions from our model in the dataset. Green boxes indicate bounding boxes for detected objects, while red boxes highlight hazardous
targets within the scene.

[51

[6]

[7

—

[8

—

[91

[10]

[11]

[12]

[13]

[14]

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision.  Springer, 2020, pp. 213—
229.

Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen,
“Detrs beat yolos on real-time object detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 16965-16974.

N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 4040—
4048.

D. Sun, D. Vlasic, C. Herrmann, V. Jampani, M. Krainin, H. Chang,
R. Zabih, W. T. Freeman, and C. Liu, “Autoflow: Learning a better train-
ing set for optical flow,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 10093-10 102.
S. Khairi, E. Meunier, R. Fraisse, and P. Bouthemy, “Efficient lo-
cal correlation volume for unsupervised optical flow estimation on
small moving objects in large satellite images,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 440-448.

A. Saxena, S. Chung, and A. Ng, “Learning depth from single monocular
images,” Advances in neural information processing systems, vol. 18,
2005.

R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” IEEE transactions on pattern analysis and machine
intelligence, vol. 44, no. 3, pp. 1623-1637, 2020.

Z. Li, X. Wang, X. Liu, and J. Jiang, “Binsformer: Revisiting adaptive
bins for monocular depth estimation,” IEEE Transactions on Image
Processing, 2024.

M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan,
S. Joty, and J. X. Huang, “A systematic study and comprehensive

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

25

evaluation of chatgpt on benchmark datasets,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.18486

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat er al, “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

N. Bian, X. Han, L. Sun, H. Lin, Y. Lu, B. He, S. Jiang, and B. Dong,
“Chatgpt is a knowledgeable but inexperienced solver: An investigation
of commonsense problem in large language models,” 2024. [Online].
Available: https://arxiv.org/abs/2303.16421

P. Zhang, X. Li, X. Hu, J. Yang, L. Zhang, L. Wang, Y. Choi, and J. Gao,
“Vinvl: Revisiting visual representations in vision-language models,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 5579-5588.

K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Conditional prompt learning
for vision-language models,” in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2022, pp. 16816—
16 825.

D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4:
Enhancing vision-language understanding with advanced large language
models,” arXiv preprint arXiv:2304.10592, 2023.

A. K. AlShami, A. Kalita, R. Rabinowitz, K. Lam, R. Bezbarua, T. Boult,
and J. Kalita, “Coool: Challenge of out-of-label a novel benchmark for
autonomous driving,” arXiv preprint arXiv:2412.05462, 2024.

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2462-2470.

R. Mahjourian, J. Kim, Y. Chai, M. Tan, B. Sapp, and D. Anguelov,
“Occupancy flow fields for motion forecasting in autonomous driving,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5639-5646,
2022.

C. Li, Y. Qian, C. Sun, W. Yan, C. Wang, and M. Yang, “Ttc4mcp:
Monocular collision prediction based on self-supervised ttc estimation,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2023, pp. 244-250.

Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “Unos: Uni-
fied unsupervised optical-flow and stereo-depth estimation by watching



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

videos,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 8071-8081.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural language
supervision,” 2021. [Online]. Available: https://arxiv.org/abs/2103.00020
C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2102.05918

X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object
detection via vision and language knowledge distillation,” arXiv preprint
arXiv:2104.13921, 2021.

K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision, vol. 130,
no. 9, pp. 2337-2348, 2022.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021. [Online]. Available:
https://arxiv.org/abs/2010.11929

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,”
Advances in neural information processing systems, vol. 36, 2024.

A. P. Gema, P. Minervini, L. Daines, T. Hope, and B. Alex, “Parameter-
efficient fine-tuning of llama for the clinical domain,” arXiv preprint
arXiv:2307.03042, 2023.

Y.-L. Sung, J. Cho, and M. Bansal, “Vl-adapter: Parameter-efficient
transfer learning for vision-and-language tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 5227-5237.

J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation,”
in International conference on machine learning. PMLR, 2022, pp.
12 888-12900.

J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” in International conference on machine learning. PMLR,
2023, pp. 19730-19 742.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al, “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

26



AI-Driven Metabolic Engineering of y-Aminobutyric

Acid: Biosynthetic Advances and Industrial
Applications

SiYing Wang" 2, HuangHui Xia" 2, and JianZhong Huang" 2
"' College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
2 Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering
Research Center of Industrial Microbiology and Fermentation Technology, Fujian Normal University, Fuzhou, Fujian, China

Abstract— Gamma-aminobutyric acid (GABA) is relatively
significant inhibitory neurotransmitter in the mammalian
central nervous system and plays crucial roles in regulating
neural excitation, mood, and muscle activity. Beyond mammals,
GABA is also pivotal in plant stress responses and microbial
metabolism. It has wide applications in the pharmaceutical,
agricultural, and food industries. In recent years, metabolic
engineering strategies combined with synthetic biology, gene
editing technologies, and artificial intelligence have
significantly advanced the understanding and production of
GABA. Notably, the integration of machine learning into
microbial engineering has enabled rational design and
optimization of biosynthetic pathways, enzyme functions, and
fermentation conditions. This paper first summarizes the
important application value of GABA in the fields of
agriculture, medicine and food, pointing out the direction for
subsequent synthetic biology research. Subsequently, the
biosynthetic mechanisms (such as the glutamate decarboxylase
GAD pathway and the polyamine degradation pathway) and the
key factors influencing accumulation were analyzed, laying a
theoretical foundation for the subsequent engineering
transformation. In terms of strain modification, the application
of systemic metabolic engineering strategies significantly
increased GABA production. Finally, the focus is on discussing
how to deeply integrate artificial intelligence with GABA
synthetic biology, covering Al-driven path design and flux
optimization, deep learning-based precision enzyme
engineering, intelligent biological process control and
optimization, as well as data-driven autonomous strain
development. The collaborative application of these
technologies has effectively promoted the efficient
biomanufacturing of GABA, fully demonstrating the
innovative advantages of multidisciplinary integration.

Index Terms—GABA, metabolic engineering,
optimization, machine learning, synthetic biology
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I. INTRODUCTION

GABA, a white crystalline powder with a molecular formula
of C4HINO?2 and a molecular weight of 103.12 g/mol, is highly
soluble in water (130 g/100 mL) (Fig. 1). Biologically, it
functions as the principal inhibitory neurotransmitter in the
mammalian central nervous system, playing a crucial role in
maintaining the balance between neuronal excitation and
inhibition. GABA participates in a variety of physiological
processes, including the modulation of mood, sleep regulation,
and muscle coordination!],

Beyond its neurological roles in animals, GABA is also
involved in a wide array of functions in plants and
microorganisms. In plants, it contributes to abiotic stress
tolerance and developmental processes through its interaction
with signaling networks and metabolic regulation[2113], In
microbes, GABA is linked to acid resistance, carbon-nitrogen
metabolism, and redox homeostasis*.

Due to its broad physiological relevance, GABA has
garnered increasing attention for its commercial applications in
pharmaceuticals, agriculture, and the functional food industry.
The global GABA market has experienced steady growth
across various regions, including North America, Europe, Asia-
Pacific, Latin America, and the Middle East and Africa. Among
these, North America currently holds the largest market share,
driven by rising consumer awareness of GABA-enriched
products for stress relief, sleep improvement, and anxiety
reduction,

In 2023, the global GABA market was valued at
approximately USD 89 million and is projected to reach USD
157 million by 2032, with a compound annual growth rate
(CAGR) of 6.4% B! Importantly, the COVID-19 pandemic has
catalyzed a significant shift in market dynamics. Between 2020
and 2023, the global GABA market size surged from USD 2.47
billion to USD 3.76 billion, reflecting an elevated CAGR of
11.2% compared to the pre-pandemic average of 6.8%. This
growth has been largely fueled by the global mental health
crisis, characterized by a 31% increase in anxiety disorders and



an estimated 240 million new cases of insomnia. Given the
critical role of the GABAergic system in neuropsychiatric
health, this surge in demand has created multifaceted
opportunities for GABA-based products across health and
wellness sectors.

0)

y-aminobutyric acid
Fig. 1. The chemical molecular model of GABA.

GABA is a non-protein amino acid that exhibits multiple
physiological functions in biological systems: In mammals, it
serves as the primary inhibitory neurotransmitter, regulating
neuronal excitability, neuroendocrine processes, as well as
behaviors such as sleep and mood; In plants, it mediates abiotic
stress responses and metabolic balance; In microorganisms, it
helps with acid resistance and carbon-nitrogen metabolism.
This cross-species functional diversity is closely related to its
conserved synthetic mechanism - dependent on glutamate
decarboxylase (GAD), providing a biological basis for the
development of efficient production strategies.

The commercial value of GABA has driven the innovation of
production technology. Driven by its application demands in
functional foods, neurotherapeutic agents and plant biological
regulators, production strategies have shifted from traditional
chemical synthesis (limited by toxic intermediates and
environmental hazards) to biological methods. Among them,
although the enrichment method of inducing plant GAD
activation through stress faces scalability challenges, microbial
fermentation using engineered strains (Escherichia coli,
Lactobacillus, Corynebacterium glutamicum) has become the
dominant industrial method.

The CRISPR-Cas9 technology has completely transformed
the pattern of GABA biomanufacturing. By precisely editing
the GAD gene cluster, optimizing cofactor regeneration and
relieving feedback inhibition, the reported engineered strain
achieved a maximum GABA production yield of 62.9 g/L and
a conversion rate of 0.5 g/g glucose, which is currently the
highest conversion rate of GABA production by one-step
method using glucose as the substrate reported ¢ 1.
Advancements in metabolic engineering, including GAD
optimization, cofactor regeneration, and carbon flux redirection,
continuously enhance the feasibility of high-yield and
sustainable GABA biosynthesis.

Technological progress and market demand form a virtuous
cycle. Due to the impact of the mental health crisis, the global
demand for GABA has soared, with the market size growing at
an annual rate of 11.2% from 2020 to 2023, prompting the
production model to shift from highly polluting chemical
synthesis to sustainable microbial fermentation. At present, the
third-generation cell factories, which feature both high yield
and environmental friendliness, are driving the rapid expansion
of GABA applications from pharmaceuticals to functional
foods, agricultural biostimulants and other fields.

28

II. PROGRESS IN CROSS-FIELD APPLICATIONS OF GABA

Figure 2 summarizes the expanding cross-field applications
of GABA, spanning neuropharmaceutical interventions,
functional food fortification, plant stress resilience, and
microbial biomanufacturing platforms.

A. Applications in Agriculture

In agriculture, GABA plays a pivotal role in enhancing crop
tolerance to abiotic stress and regulating growth. Exogenous
GABA has been demonstrated to alleviate salt, drought, cold,
and mechanical stress by modulating intracellular pH,
regulating stomatal aperture, promoting osmotic adjustment,
and enhancing reactive oxygen species (ROS) scavenging
systems[®®]. For example, GABA accumulation in wheat is
regulated through the interaction between the potassium
transporter TaNHX2 and TaGADI, leading to improved
drought resistance by modulating stomatal aperture. In peanuts,
seed priming with 20 mmol/L GABA for 12 hours under
drought stress increased germination rate, vigor, and index by
51.2%, 85.7%, and 60.4%, respectively, and also enhanced
soluble sugar and protein content!’],

GABA also contributes to salt stress tolerance, as seen in
barley and tobacco™, and enhances cold tolerance by reducing
membrane damage, as evidenced by lower electrolyte leakage
in GABA-treated tomato seedlings!'%!?. Furthermore, GABA
improves early growth and photosynthesis in maizel'}], and
positively influences yield components, quality traits, and
antioxidant attributes in fragrant rice through 2-acetyl-1-
pyrroline (2AP) modulation (14115,

Beyond stress adaptation, GABA functions as a plant growth
regulator. In black gram (Vigna mungo L.), foliar application of
1.0 mg/L GABA significantly increased plant height, branch
and leaf numbers, total chlorophyll, and seed yield, with the
highest yield (1.50 t/ha) exceeding the control group (1.30
t/ha)l 16 1. Moreover, GABA can indirectly enhance soil
conditions via GABA-related microbial activity in compost-
based systems, thereby supporting sustainable crop
production!'7],

Finally, GABA-related signaling intersects with plant—insect
interactions!'$1111. GABA receptor/chloride channel complexes
are key targets for new-generation insecticides, and GABA
biosynthesis pathways have been linked to fruit fly resistance
in tomato?0I211,

B. Pharmaceutical Applications

GABA serves as a critical therapeutic agent in multiple
medical domains?. In neurology, GABAergic dysfunction is
implicated in major depressive disorder (MDD), with studies
demonstrating significantly reduced GABA levels in the
prefrontal cortex of affected individuals [?*]. Consequently,
GABA receptor agonists (e.g., benzodiazepines, Z-drugs like
zolpidem) are employed to augment inhibitory
neurotransmission. Clinical evidence supports their synergistic
use with selective serotonin reuptake inhibitors (SSRIs) for
alleviating depressive symptoms and comorbid insomnia 241,
Beyond neurological applications, GABA modulates
cardiovascular and metabolic  functions, exhibiting



antihypertensive effects through vasodilation and potential
glucose homeostasis regulation in diabetes. Immunologically,
GABA suppresses T-cell proliferation and pro-inflammatory
cytokine production (e.g., TNF- o , IL-6), attenuating
autoimmune and inflammatory responses [ 2° I These
multifaceted actions position GABAergic drugs as pivotal tools
for treating neuropsychiatric, cardiovascular, and immune-
mediated conditions.

C. Food Industry Applications

Approved as a novel food ingredient in China since 2009,
GABA is regulated with a maximum daily intake of 500 mg 12°,
Its incorporation into functional foods leverages neuroactive
and hypotensive properties, with claims including stress
reduction and sleep quality improvement. A key technological
advantage is GABA 's thermostability in processed foods.
Research confirms that GABA-enriched corn germ retains >85%
of its GABA content after baking at 180°C for 20 minutes,
enabling its integration into bread, cakes, and extruded snacks
without significant degradation 1?7, Current innovations focus
on optimizing extraction protocols and fortifying staple foods
(e.g., rice, dairy products), expanding GABA 's role in
preventive nutrition while adhering to safety thresholds.
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Fig. 2. The functions of GABA and its corresponding roles in
healthcare, agriculture and food.

III. MAIN PATHWAYS OF GABA BIOSYNTHESIS

GABA, first chemically synthesized in 1883, was initially
recognized solely as a metabolic byproduct in plants and
microorganisms [?1.Early chemical synthesis approaches —
such as the high-temperature condensation of 4-
chlorobutyronitrile with potassium phthalimide or the alkaline
hydrolysis of pyrrolidone — achieved rapid and high-yield
GABA production. However, these methods were limited by
complex processing, toxic byproducts, and environmental
hazards, making them unsuitable for food and pharmaceutical
applications. As a result, biological synthesis has emerged as
the preferred route. The plant enrichment method activates
endogenous GAD activity by applying environmental stresses
(e.g., extreme temperatures, salinity), leading to GABA
accumulation. While safe and simple, this method suffers from
low yield, limiting its scalability],

The diversity of GABA biosynthetic pathways—spanning
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canonical routes (Fig. 3), polyamine catabolism, and context-
dependent precursors — highlights its metabolic versatility.
These pathways are tightly regulated by species-specific
mechanisms, environmental cues, and intracellular demands.
For instance, in plants, polyamine degradation compensates for
reduced GAD activity under drought stress, while microbial
systems exploit pH-dependent GAD optimization for
industrial-scale fermentation. Such regulatory plasticity
provides multiple biotechnological leverage points. Advances
in metabolic engineering and synthetic biology enable targeted
manipulation of GABA metabolism, facilitating applications
ranging from stress-resilient crop development to microbial
bioreactor optimization. By integrating chemical, plant-based,
and microbial strategies, researchers harness GABA ' s
multifunctional roles, bridging agricultural, industrial, and

therapeutic innovations.
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Fig. 3. GABA biosynthetic pathway.

Glu, glucose; Glu-6-P, glucose-6-phosphate; AKG, o -
glutamic acid; GABA, vy -
aminobutyric acid; Suc-CoA, succinyl coenzyme A; Suc,
succinic acid; OAA, oxaloacetic acid; GAD, glutamate
decarboxylase; GABA-T, GABAaminotransferase; SSA,
succinic acid; SSADH, succinate dehydrogenase; GDH,
glutamate dehydrogenase; Succ-CoA, succinyl-coenzyme A;
SSADH, succinate hemialdehyde dehydrogenase.

ketoglutaric acid; L-Glu,

A. Glutamate Decarboxylase (GAD) Pathway

The glutamate decarboxylase (GAD) pathway represents the
principal and most efficient biosynthetic route for GABA
production, conserved across animals, plants, and
microorganisms. Central to this pathway is the irreversible
decarboxylation of L-glutamate, catalyzed by the pyridoxal 5'-
phosphate (PLP)-dependent enzyme glutamate decarboxylase
(GAD; EC 4.1.1.15), which yields GABA and CO, under
optimal acidic conditions (pH 4.5-6.0)[3°]. The enzymatic
activity of GAD is critically modulated by PLP, a cofactor
derived from vitamin B6, and is enhanced in acidic
environments—a feature leveraged in microbial fermentation
systems for industrial GABA synthesis!l,

In mammals, two GAD isoforms, GAD67 and GADG65,
exhibit distinct subcellular distributions and functional roles.
GADG67, localized predominantly in the cytosol, sustains basal
GABA levels essential for tonic neurotransmission, whereas



GADG65, anchored to synaptic membranes, is transiently
activated under physiological stress via Ca 2 *-dependent
signaling pathways[®2l. In plants, GAD activity is upregulated
under hypoxic or saline stress through calmodulin (CaM)-
mediated post-translational regulation. For example, flooding-
induced hypoxia in rice roots triggers GABA accumulation via
GAD activation, enhancing cellular tolerance to low-oxygen
conditions!'®). Microbial systems, particularly acid-tolerant
Lactobacillus  brevis and  metabolically  engineered
Corynebacterium glutamicum, exploit GAD's pH-dependent
activity for high-yield GABA production. Metabolic strategies,
such as co-expression of pyruvate dehydrogenase to redirect
carbon flux toward lactic acid and GABA co-synthesis, further
optimize industrial efficiency.

GABA biosynthesis is intricately linked to its catabolism
through the GABA shunt, a conserved metabolic pathway that
interfaces with the tricarboxylic acid (TCA) cycle. This shunt
involves sequential enzymatic steps®*l: (1) GABA synthesis via
GAD, (2) mitochondrial transamination of GABA to succinic
semialdehyde (SSA) by GABA transaminase (GABA-T), and
(3) oxidation of SSA to succinate by succinic semialdehyde
dehydrogenase (SSADH). Under conditions of excessive
GABA accumulation, redox imbalances may inhibit SSADH,
diverting SSA toward y-hydroxybutyrate (GHB) production. In
plants, the GABA shunt serves as a metabolic bypass under
TCA cycle dysfunction. For instance, tomato plants with
impaired succinyl-CoA synthesis upregulate GABA shunt
activity to sustain mitochondrial respiration. Similarly,
Arabidopsis mutants defective in mitochondrial GABA
transport exhibit disrupted carbon-nitrogen balance during
carbon starvation, highlighting the pathway's role in metabolic
homeostasis.

The GABA shunt is implicated in both adaptive stress
responses and disease pathogenesis. In Alzheimer’s disease,
early-stage upregulation of GABA shunt activity may
compensate for glycolytic deficits by enhancing succinate-
driven ATP production, thereby supporting neuronal energy
homeostasis. Conversely, dysregulation of GABA metabolism
contributes to redox imbalance and neurotoxicity in progressive
neurodegeneration. These findings underscore the dual role of
the GAD pathway and GABA shunt in maintaining metabolic
flexibility across biological systems, from stress adaptation in
plants to neurological resilience in mammals.

B. Polyamine Degradation Pathway

In addition to the glutamate decarboxylase (GAD) pathway,
GABA can be synthesized through the polyamine degradation
pathway, serving as a complementary or alternative
biosynthetic route under stress conditions!**]. This pathway
involves two primary branches: (1) the oxidative deamination
of putrescine by diamine oxidase (DAO; EC 1.4.3.22) to
produce 4-aminobutyraldehyde, which is subsequently
converted to GABA via aldehyde dehydrogenase, and (2) the
spermidine degradation branch, where GABA is generated
through transamination reactions. The pathway originates from
arginine or ornithine, which are enzymatically processed into
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putrescine via ornithine decarboxylase (ODC) or arginine
decarboxylase (ADC) in a PLP-dependent manner.

Om Arg
Inside the cell ¢ ¢
Om Arg
oDC
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GABAAMADH \pi1 A9 gpa

Fig. 4. Polyamine degradation pathway

Orn, ornithine; Arg, arginine; ODC, ornithine decarboxylase;
ADC, Arginine decarboxylase; Put, putsamine; DAO, diamine
oxidase; SPDS, spermidine synthase; Spd, spermidine; PAO,
Polyamine oxidase; ABAL, 4-aminobutyral;, AMADH,
aminoaldehyde dehydrogenase; GABA, y-aminobutyric acid.

In plants, prolonged abiotic stress, such as drought, often
correlates with reduced GAD activity. Under these conditions,
the polyamine degradation pathway compensates by
maintaining GABA homeostasis through DAO upregulation.
For example, drought-stressed plants exhibit elevated DAO
activity, ensuring sustained GABA levels critical for osmotic
adjustment and stress signaling. In animals, polyamine
metabolism intersects with apoptotic signaling, where GABA
derived from putrescine degradation may modulate
programmed cell death®), Increased GABA production via this
pathway has been implicated in regulating mitochondrial
permeability and caspase activation, suggesting a dual role in
both metabolic and apoptotic processes.

The polyamine degradation pathway highlights metabolic
flexibility in GABA biosynthesis. In plants, this route acts as a
fail-safe mechanism when GAD-dependent synthesis is
compromised, while in mammals, it contributes to
neurochemical fine-tuning and stress adaptation. The pathway’
s reliance on DAO underscores its sensitivity to redox states, as
DAO activity is influenced by reactive oxygen species (ROS)
generated under stress. Furthermore, the interplay between
polyamine catabolism and GABA synthesis underscores the
integration of nitrogen metabolism with stress-responsive
signaling networks.

C. Other Factors Influencing GABA Biosynthesis

Beyond the GAD and polyamine pathways, GABA synthesis
is modulated by diverse biochemical and physiological factors,
reflecting its metabolic complexity and context-dependent
regulation.

In the mammalian neocortex, glutamine serves as a major
precursor for GABA synthesis, particularly under conditions of



GABA transaminase (GABA-T) inhibition. This pathway
involves the astrocyte-neuron glutamine shuttle, where
glutamine is transported into neurons, converted to glutamate
by phosphate-activated glutaminase (PAG), and subsequently
decarboxylated to GABA via GAD. In vivo metabolic tracing
studies following acute GABA-T inhibition have confirmed
glutamine ' s pivotal role in sustaining GABAergic
neurotransmission(>l,

Emerging evidence challenges the traditional view of
exclusive cytoplasmic GABA synthesis. Recent studies reveal
that GABA can be synthesized and packaged directly within
synaptic vesicles through vesicle-localized enzymatic activity.
For instance, the presence of GAD isoforms in synaptic vesicles
enables localized GABA production, independent of cytosolic
pools, ensuring rapid neurotransmitter replenishment during
high-frequency neuronal activity7.

In microbial systems, GABA biosynthesis is highly strain-
specific and influenced by genetic background, culture
conditions, and stress responses. Industrial strains such as
Lactobacillus brevis and Escherichia coli exhibit divergent
GABA yields due to differences in glutamate availability, GAD
expression, and pH tolerance. Optimization strategies,
including pH control (to exploit GAD's acidophilic activity),
substrate supplementation (e.g., monosodium glutamate), and
oxygen level modulation, are critical for maximizing
productivity. For example, Corynebacterium glutamicum
engineered for enhanced glutamate efflux achieves superior
GABA titers under anaerobic fermentation 31,

IV. ENGINEERING HIGH-YIELD GABA-PRODUCING STRAINS

The metabolic versatility of GABA biosynthesis, spanning
canonical pathways, polyamine catabolism, and context-
dependent precursors, provides diverse targets for strain
engineering. Leveraging  species-specific ~ regulatory
mechanisms and synthetic biology tools, researchers have
developed advanced strategies to enhance GABA titers for
industrial, agricultural, and biomedical applications.

A. Metabolic Pathway Modification

Directed evolution and rational design of glutamate
decarboxylase (GAD) have been pivotal in improving catalytic
efficiency and stability. For instance, site-directed mutagenesis
of Lactobacillus brevis GAD expanded its pH tolerance,
enabling robust activity under acidic fermentation conditions.
Heterologous expression systems, such as T7 promoter-
driven Lactococcus lactis GAD in Escherichia coli, have
achieved up to 3-fold higher GABA yields compared to native
strains.

To maximize flux toward GABA, metabolic engineers co-
optimize upstream substrate supply and downstream pathway
redirection. Overexpression of glutamate dehydrogenase (GDH)
enhances intracellular glutamate pools, while CRISPR-Cas9-
mediated knockout of GABA transaminase (GABA-T)
prevents GABA catabolism. Shi et al. [3°1Optimization of
ribosomal binding site (RBS R4 with 6-nt spacing) and
screening of efficient promoters (synthetic PtacM outperformed
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native promoters) significantly enhanced heterologous gadB2
expression in Corynebacterium glutamicum. The engineered
strain achieved 156% higher glutamate decarboxylase activity
and >25 g/ GABA production via gadB1/gadB2 co-expression,
enabling complete conversion of endogenous glutamate to
GABA. This synergy between precursor enrichment and
pathway insulation exemplifies the power of systems-level
metabolic engineering.

Strategic supplementation of pyridoxal phosphate (PLP), a
GAD cofactor, and low-cost carbon sources (e.g., glucose or
lignocellulosic hydrolysates) enhances both enzymatic activity
and process economics. Nitrogen source optimization (e.g.,
ammonium sulfate) further supports microbial growth and
GABA synthesis. Dynamic control of pH (4.5 — 5.5),
temperature (30-37°C), and dissolved oxygen levels is critical
for sustaining GAD activity and cell viability. Fed-batch
systems with real-time substrate feeding minimize metabolic
burden, while two-stage fermentation separates growth and
production phases to prolong GAD expression. However, to
obtain these optimized data, a large amount of labor costs,
economic costs and time costs are often required. If the
emerging machine learning algorithms can be combined with
metabolic flux data and bioreactor parameters to achieve
predictive adjustment, it will maximize the yield and stability.

V. INTEGRATION OF ARTIFICIAL INTELLIGENCE INTO GABA
SYNTHETIC BIOLOGY.

Recent advances in artificial intelligence (Al) and machine
learning (ML) have revolutionized metabolic engineering
strategies for enhancing GABA production in Escherichia coli
and other microbial hosts. These technologies enable end-to-
end optimization of biosynthetic processes through data-driven
pathway design, precision enzyme engineering, and intelligent
bioprocess control.

A. AI-Powered Pathway Design & Flux Optimization

Al algorithms leverage multi-omics datasets (genomics,
transcriptomics, proteomics, metabolomics) to identify optimal
biosynthetic routes for GABA. ML-based metabolic flux
prediction tools, such as those advanced by Bae et al. (2024),
simulate complex pathway dynamics under varying cultivation
conditions!3214%, This capability allows for the rational rewiring
of carbon flux away from competing branches and towards
GABA synthesis, significantly improving yield predictions and
guiding targeted genetic modifications. Furthermore, intelligent
optimization algorithms (e.g., multi-strategy metaheuristics like
the Dung Beetle Optimizer adapted for biological systems) can
efficiently navigate the vast combinatorial space of gene
expression levels (e.g., gadA/B, succinate semialdehyde
dehydrogenase gabD) and regulatory elements to identify
globally optimal pathway configurations for maximizing
GABA flux!l,

B. Deep Learning for Precision Enzyme Engineering

A critical focus lies on enhancing the performance of
glutamate decarboxylase (GadA/B), the rate-limiting enzyme
converting L-glutamate to GABA. Al-driven enzyme function



prediction and design methods are pivotal. While the study by
Xia et al. focuses on a different enzyme (Shikimate
Dehydrogenase) and plant system, its methodology is
relevant?], It was integrated conceptually as an example of the
type of foundational gene discovery and characterization that
Al-enhanced bioinformatics (like more powerful gene
prediction, functional annotation, and even in silico cloning
tools) can accelerate and deepen for any target enzyme,
including GABA pathway enzymes like GadA/B. This
connection is made in the concluding perspective on Al
accelerating discovery.

Deep learning models (e.g., ProteinGAN, DeepMutScan)
generate novel enzyme variants with tailored properties. These
models can optimize GadA/B sequences in silico for improved
catalytic efficiency (kcat/Km), stability under fermentation
conditions (e.g., pH, temperature), and resistance to
inhibitors*’l. Miao et al. exemplified this by engineering GAD
mutants active at neutral pH, achieving a 2.5-fold increase in
GABA titers™*]. Deep learning models predict and customize
promoter strength and ribosome binding site (RBS) sequences
to precisely tune gadA/B expression levels, balancing enzyme
abundance with cellular metabolic burden to maximize GABA
outputi*,  Al-based protein structure prediction (e.g.,
AlphaFold2) and analysis identify key residues influencing
enzyme activity, stability, and cofactor binding. This enables
rational design of targeted mutations to enhance GAD
performance, such as improving acid tolerance crucial for
industrial-scale GABA fermentation.

C. Intelligent Bioprocess Control & Optimization

Al and ML transforms fermentation from empirical to
predictive and adaptive. Fed-batch systems integrated with Al
controllers dynamically adjust critical parameters (pH,
dissolved oxygen, temperature, substrate feeding rates) based
on real-time sensor data and predictive models. Wei et al.
demonstrated this in Corynebacterium glutamicum, achieving
exceptionally high GABA titers (58.2 g/L) through dynamic
metabolic controll ¥ 1. ML algorithms (e.g., Bayesian
optimization, neural networks) analyze complex interactions
between medium components and cultivation parameters. Aida
et al. utilized ML to distinguish optimal strategies for native
versus heterologous metabolite production, leading to GABA
yield enhancement while minimizing byproduct formation[*¢],

D. Data-Driven Autonomous Strain Development

The convergence of AI with synthetic biology enables
closed-loop Design-Build-Test-Learn (DBTL) cycles. ML
pipelines, as developed by Gongalves et al., shift metabolic
engineering from knowledge-driven to data-driven paradigms.
Figure 4 shows the role of artificial intelligence in GABA-
related metabolic engineering under the DBTL cycle, visually
demonstrating how different artificial intelligence tools
contribute at various stages of the engineering process. These
models integrate omics data and high-throughput screening
results to predict flux control points and strain performance
with high accuracy (>90%), drastically reducing experimental
iteration™”], Al systems iteratively refine genetic designs based
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on experimental feedback. This autonomous optimization
reduces strain development cycles by 40 — 60%, rapidly
converging on high-performing GABA production chassis™®.
Adopting advanced numerical methods (e.g., viscosity implicit
approximation for solving metabolic network variational
inequalities!*’] to enhance model robustness. Exploring non-
classical mathematical frameworks (e.g., fractional calculus on
p-adic spaces™” to describe anomalous transport phenomena in
cellular environments.
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Fig. 4. The role of Artificial intelligence in GABA-related
metabolic engineering under the DBTL cycle.

Al technologies have fundamentally transformed GABA
biomanufacturing by enabling predictive pathway design,
precision enzyme engineering, and intelligent bioprocess
control. The integration of sophisticated ML models (for
prediction and optimization) with multi-omics data analytics
and automated robotic platforms (for high-throughput testing)
creates a powerful, self-optimizing framework. Future
advancements will focus on enhancing model generalizability
across hosts and conditions, improving real-time data
integration for adaptive fermentation, and fully automating the
DBTL cycle to achieve unprecedented efficiency and yields for
the industrial-scale production of GABA and related high-value
bio-based chemicals. Continued development and application
of Al exemplified by advances in optimization algorithms®!,
will be central to unlocking the full potential of microbial cell
factories for GABA synthesis.

Artificial intelligence technology is bringing revolutionary
changes to GABA biosynthesis, achieving full-process
optimization from theoretical design to industrial production by
building a complete intelligent toolchain. Table 1 summarizes
the core tools and functions of artificial intelligence (Al) in
different stages of GABA biosynthesis, covering the full-
process optimization from metabolic pathway design to high-
yield strain screening.

In the metabolic pathway design stage, tools such as Retro
Path 2.0 and Selenzume can accurately predict feasible
synthetic pathways and key enzyme candidates, laying the
foundation for subsequent engineering modifications. In terms
of enzyme engineering optimization, the combined application
of DeepMutScan and AlphaFold2 not only accurately predicted
the mutation effect of glutamate decarboxylase (GAD), but also



precisely analyzed the enzyme structure, significantly
enhancing the catalytic performance of the enzyme. At the level
of expression regulation, DeepRibo and RBSDesigner have
achieved precise expression regulation of GABA synthesis
genes through intelligent design of the translation process and
ribosome binding sites. The metabolic flow reprogramming
stage relies on tools such as ML-Flux and OptKnock-ML to
optimize the carbon and nitrogen metabolic flow through
machine learning and maximize the synthesis efficiency of
GABA. Finally, algorithms such as XGBoost and random
Forest conduct in-depth mining of high-throughput screening
data to quickly identify the key genotype characteristics of
high-yield strains. These Al tools together form a complete
intelligent closed-loop system, from path design, enzyme
modification, expression optimization, metabolic regulation to
strain screening, creating a set of efficient and precise GABA
biomanutrition solutions, providing strong technical support for
industrial production. This intelligent R&D model not only
significantly enhances R&D efficiency but also shortens the
traditional R&D cycle that would take months or even years to
just a few weeks, demonstrating the huge application potential
of artificial intelligence in the field of synthetic biology.

TABLE I
REPRESENTATIVE APPLICATIONS OF Al IN GABA-RELATED
METABOLIC ENGINEERING

Ap[:;ceaglon Repr;ie:)r;:atlve Description
Predicts feasible
Metabolic RetroPath2.0, synthetic routes
pathway design | Selenzyme and enzyme
candidates
Predicts
Enzyme Deep MutScan, ilsllclicgi?:llf'tluieflt{eCts
engineering ProteinGAN, consequences of
AlphaFold2 . .
mutations 1n
GAD
Designs
Expression DeepRibo, promoter/RBS
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V|.CONCLUSION AND FUTURE PERSPECTIVES

The biosynthesis of GABA has evolved from pathway
elucidation to systematic, interdisciplinary engineering. While
conventional strategies have relied on synthetic biology and
metabolic pathway modification, the integration of machine
learning opens a new chapter in intelligent strain design. Future
work should focus on developing hybrid Al-assisted metabolic
platforms to dynamically model, predict, and optimize GABA
production at both molecular and process levels. Combining
high-throughput screening with Al algorithms will further
accelerate strain development cycles. These advances will
enable the broader industrial application of GABA in
neuroscience, agriculture, and green chemistry.
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The combination of artificial intelligence and GABA
metabolic engineering is facing four core challenges: The
limitations of data quality and scale lead to poor model training
effects; The insufficient generalization ability of the model
restricts cross-host applications. The real-time bottleneck of
dynamic regulation affects the fermentation efficiency. The
disconnection between experimental verification and Al design
reduces the reliability of prediction. To address these challenges,
in the future, it is necessary to build high-quality multimodal
databases, develop transferable hybrid Al models, establish
real-time dynamic optimization systems, and improve the
virtual and real collaborative verification platform. Specifically,
the efficiency and quality of GABA production can be
significantly enhanced through innovative methods such as
establishing a standardized GABA metabolism database,
adopting transfer learning and physical information embedding
techniques, deploying edge AI and reinforcement learning
algorithms, and building digital twins and automated
experimental platforms. These technological advancements
will drive the industrial application of GABA in fields such as
neuroscience, green chemistry, and agriculture, including the
development of high-purity therapeutic GABA, the production
of bio-based GABA monomers, and smart agricultural
fertilizers. To realize this vision, it is necessary for
interdisciplinary teams to collaborate to establish an open
innovation platform, formulate unified AI model testing
standards, and promote data sharing in the industrial sector,
thereby accelerating the industrialization process of Al-driven
GABA biomanufacturing and making it a benchmark
application in the field of synthetic biology.
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Abstract

Illicit transaction detection on blockchain networks
presents a critical challenge due to the pseudonymous, de-
centralized, and high-volume nature of decentralized fi-
nance (DeFi) ecosystems. Traditional machine learning
models struggle to effectively capture the temporal dy-
namics and irregular patterns of illicit behavior, while
graph-based methods often incur high computational costs
and rely on static relational structures. In this paper, we
propose a novel dual-attention framework—GAM-CoT
Transformer—for robust transaction-level anomaly detec-
tion.

The proposed model integrates two key components:
a Global Attention Module (GAM) that adaptively
reweights feature channels and temporal steps to empha-
size salient patterns, and a Contextual Transformer (CoT)
block that efficiently models short-range dependencies us-
ing grouped convolutions instead of full self-attention.
This design enables the model to simultaneously achieve
computational efficiency, temporal expressiveness, and
improved detection sensitivity.

We evaluate our approach on a real-world blockchain
transaction dataset and demonstrate its superiority over
conventional classifiers including Random Forest, XG-
Boost, and LSTM-based models. The GAM-CoT Trans-
former achieves higher recall and F1 scores, particularly
for the minority illicit class, while maintaining fast con-
vergence and deployment scalability. Our method offers
a practical and effective solution for enhancing the secu-
rity of blockchain systems through intelligent transaction
behavior modeling.

Index Terms— Blockchain security, Illicit transaction detec-
tion, Temporal modeling, Attention mechanisms, Transformer,
Global attention module, Contextual Transformer, Financial
anomaly detection, Class imbalance, Deep learning.

1 Introduction

The proliferation of blockchain technologies has revolution-
ized digital finance by enabling decentralized, transparent, and
trustless transaction systems[15]. While these properties pro-
vide substantial benefits in terms of efficiency and autonomy,
they also create opportunities for misuse, including money
laundering, fraud, terrorist financing, and other forms of illicit
financial behavior. As decentralized platforms gain traction in
both mainstream finance and global remittance markets, the
demand for reliable, scalable, and intelligent systems to mon-
itor and detect suspicious activity on blockchain networks be-
comes increasingly critical[4].

Traditional financial forensics often rely on centralized
oversight and human audit trails. In contrast, blockchain envi-
ronments are pseudonymous and borderless, with transaction
volumes growing at unprecedented scales[21]. This transfor-
mation challenges conventional detection paradigms, necessi-
tating the development of algorithmic methods that can iden-
tify illicit activities from high-volume, heterogeneous, and im-
balanced transactional data. Specifically, identifying patterns
that distinguish licit from illicit behavior is difficult due to sub-
tle, evolving manipulation strategies, the sparsity of ground
truth labels, and the highly skewed class distribution in real-
world datasets.

Previous efforts to address these challenges include super-
vised machine learning models trained on aggregated transac-
tion features, as well as graph-based approaches that leverage
the topological structure of address interactions. While effec-
tive in controlled settings, these models often lack temporal
granularity, struggle to generalize in dynamic environments,
and require extensive feature engineering or graph construc-
tion. More recently, deep learning techniques—particularly
recurrent and attention-based architectures—have been pro-
posed to capture complex behavioral dependencies within
transaction sequences. However, these methods frequently en-
counter limitations in efficiency, interpretability, or sensitivity
to minority class anomalies[20].
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In this study, we propose a novel dual-attention neural
framework, referred to as the GAM-CoT Transformer, which
addresses these gaps by integrating hierarchical attention
mechanisms and contextualized temporal modeling. Our ar-
chitecture combines a Global Attention Module (GAM) that
adaptively reweights feature channels and time steps based
on their relevance, with a Contextual Transformer (CoT)
block that captures short-range temporal dependencies using
grouped convolutions instead of full self-attention. This de-
sign enables the model to maintain computational efficiency
while improving its ability to detect illicit behavior embedded
in sequential transaction data.

We evaluate our model on a benchmark blockchain dataset
comprising labeled transactions with varying feature dimen-
sions and sequence lengths. Compared to traditional classifiers
such as Random Forest, XGBoost, and logistic regression, our
approach demonstrates superior performance in terms of recall
and F1 score—two metrics critical for the successful identifi-
cation of rare illicit behaviors. Moreover, the proposed frame-
work converges within a limited number of training epochs
and does not require address-level graph features, making it a
practical candidate for real-time monitoring systems.

In summary, the contributions of this work are threefold: (1)
we design a lightweight yet expressive dual-attention architec-
ture tailored for blockchain transaction analysis; (2) we intro-
duce a training strategy that mitigates class imbalance while
preserving generalization; and (3) we conduct a comprehen-
sive evaluation that demonstrates the superiority of our model
over existing baselines across multiple performance dimen-
sions. This paper paves the way for more scalable and inter-
pretable deep learning systems in blockchain surveillance and
financial anomaly detection.

2 Related Works

Artificial intelligence (AI) has achieved widespread adoption
across a variety of domains, including robotics [11], affective
computing [13], physiological signal modeling [14], digital
governance [8], and personalized recommender systems [19].
In parallel, the detection of illicit transactions on blockchain
networks has emerged as a critical research area, attracting at-
tention from multiple disciplines such as machine learning,
graph theory, time-series analysis, and attention-based deep
learning [23, 21, 4]. This section reviews the existing body
of work that has laid the groundwork for our proposed ap-
proach, while also identifying their limitations in the context
of transaction-level anomaly detection.

2.1 Supervised Machine Learning for

Blockchain Transaction Classification

Early efforts in illicit activity detection on blockchain plat-
forms primarily relied on supervised learning algorithms us-

ing structured tabular features. Models such as Logistic Re-
which are common ingression, Decision Trees, Random Forest, Support Vector Ma-

LightGBM have been deployed to classify transactions or wal-
let behaviors (e.g., the Elliptic dataset challenge) [21, 1].

These models typically operate on handcrafted features such
as transaction amount, frequency, timestamp intervals, and
node degree statistics.

While these models exhibit strong precision and high accu-
racy under balanced datasets, they often struggle in real-world
scenarios due to severe class imbalance, where illicit transac-
tions may constitute less than 5% of the data. Moreover, they
fail to model the sequential and dynamic nature of blockchain
activities. Their reliance on static features precludes them
from capturing temporal dependencies, which are often crit-
ical in identifying evolving malicious behavior such as money
laundering patterns or rapid inter-wallet transfers.

2.2 Graph-Based Approaches and Address-
Level Modeling

Given the inherently interconnected structure of blockchain
systems, a significant body of work has employed graph-based
representations of transaction flows. In these settings, transac-
tions are modeled as edges and wallet addresses as nodes in a
directed transaction graph. Graph Neural Networks (GNN),
including Graph Convolutional Networks (GCNs), Graph At-
tention Networks (GATSs), and their variants, have been used
to propagate feature information through neighborhoods and
capture topological structures [21, 18, 6].

Several studies have demonstrated that incorporating rela-
tional information significantly boosts classification perfor-
mance, especially when illicit actors interact through multi-
hop chains. For example, work by Weber et al. and subsequent
follow-up studies on Ethereum and Bitcoin networks have ap-
plied message-passing techniques to learn latent wallet embed-
dings [21, 23]. However, these methods suffer from scalability
limitations in real-time systems, as graph construction and dy-
namic updating become computationally expensive at scale.
Furthermore, they typically require address-level aggregation,
which may blur transaction-level anomalies.

2.3 Time-Series and Sequence Models for
Transaction Behavior

To address the limitations of static modeling, researchers have
turned to time-series learning methods. Recurrent Neural Net-
works (RNNs) and Long Short-Term Memory (LSTM) mod-
els have been used to learn patterns in ordered transaction
sequences[3, 9]. For instance, by modeling transaction his-
tories as sequences of feature vectors, RNN-based models can
capture local and long-range dependencies indicative of be-
havioral shifts [26, 20, 10].

However, RNNs and LSTMs suffer from limitations in-
cluding gradient vanishing, slow training, and poor paral-
lelism. Moreover, their performance degrades when deal-
ing with highly sparse input features,
blockchain logs where many fi

elds may be zero or null. Tochines (SVMs), and ensemble approaches like XGBoost and overcome these issues,
Transformer-based models have gained
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popularity due to their attention mechanisms and scalability
[26, 6].

2.4 Transformer Architectures in Blockchain
Analytics

Transformer models, initially proposed for NLP tasks, have
recently been adopted in financial fraud detection and
blockchain behavior modeling [26, 6, 20]. Their self-attention
mechanism enables the network to capture global dependen-
cies without relying on recurrence. For instance, attention-
based models have been used to encode transaction sequences,
detect outlier windows, and classify user intents.

Despite their expressiveness, vanilla Transformers present
practical challenges: they require large-scale data for effective
training, have quadratic time complexity with sequence length,
and may overfit in low-sample domains like blockchain com-
pliance datasets. Moreover, standard self-attention fails to in-
corporate inductive biases that are useful for modeling local
burst patterns or structured financial flows.

2.5 Attention-Enhanced and Hybrid Deep
Learning Models

Recent works have attempted to overcome these limitations by
introducing hybrid architectures that combine CNNs, RNNs,
and Transformers with attention modules [6, 22]. For example,
some models integrate convolutional layers to extract localized
patterns before feeding them into Transformer encoders. Oth-
ers use hierarchical attention to distinguish feature-level and
temporal-level saliency. However, most of these approaches
still treat spatial and temporal attention separately, and often
overlook the interdependence between feature channels and
their temporal activations. Techniques such as feature sam-
pling and sparse attention have been explored to reduce the
overhead of full self-attention [17, 12, 5]. Moreover, few mod-
els consider the use of dual-attention for recalibrating both the
feature space and temporal dimension in a joint, data-driven
manner. Additionally, the attention mechanisms employed
are often full-attention based, which increases computational
overhead and limits deployment in resource-constrained envi-
ronments.

2.6 Positioning of This Work

Our work builds upon these prior advancements by propos-
ing a novel and lightweight dual-attention framework tailored
for blockchain transactions. The Global Attention Module
(GAM) captures channel-wise and temporal saliency by com-
bining global pooling and learnable gating mechanisms, al-
lowing the network to reweight both features and timestamps
adaptively. The Contextual Transformer (CoT) block replaces
full self-attention with grouped convolutions, enabling effi-
cient modeling of local sequence dependencies with linear
complexity.

In contrast to graph-based models, our approach avoids
explicit graph construction, making it suitable for high-

throughput and real-time monitoring systems. Unlike classi-
cal Transformer models, our architecture embeds inductive bi-
ases that promote learning from short-term, bursty behavior
common in illicit activities. By addressing both feature-level
importance and temporal locality, our framework offers a bal-
anced solution to the challenges of accuracy, interpretability,
and scalability in blockchain anomaly detection.

In summary, while various methodologies have been pro-
posed to detect illicit behavior on blockchains, ranging from
statistical classifiers to graph-based learning and deep tempo-
ral models, our approach provides a principled integration of
hierarchical attention and localized temporal modeling. This
positions it as a versatile and effective solution for transaction-
level anomaly detection under realistic, imbalanced condi-
tions.

3 Methodology

This section presents the methodological framework employed
for illicit transaction detection on the blockchain using a cus-
tomized deep learning model. The approach consists of three
main components: data preprocessing and sequence genera-
tion, the model architecture combining global and contextual
attention, and the training strategy including optimization and
evaluation. Each module is described in detail below.

3.1 Data Preprocessing

The dataset utilized in this study comprises structured features
extracted from blockchain transaction records. Each transac-
tion is associated with a unique identifier (txId), a time step
index indicating its position in chronological order, a set of
numerical features (such as transfer amount, gas used, and di-
rectionality indicators), and a class label denoting whether the
transaction is licit (class 1), illicit (class 0), or unknown (class
3). Transactions with unknown labels are excluded from fur-
ther analysis to maintain the integrity of supervised learning.

To standardize the feature scales and mitigate the influence
of outliers, all numerical features are normalized using Min-
Max scaling. Let x; denote the raw feature value and 7™ the
normalized counterpart. The transformation is given by

norm __ Li — mln(aj)
3 =

X

max(z) — min(z)

For temporal modeling, transaction records are grouped by
their txId and ordered according to their time step values. Each
group forms a sequence of transaction states. To enable batch
processing with uniform input dimensions, all sequences are
transformed into a fixed length 7. If a sequence contains fewer
than 7" time steps, it is zero-padded; otherwise, it is truncated.
The resulting input tensor has the shape (N, T, F'), where N
is the number of samples, 7" is the sequence length, and F' is
the feature dimension.
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3.2 Model Architecture

The proposed model integrates a feature recalibration mech-
anism via the Global Attention Module (GAM) with a
convolution-based contextual learning mechanism via the
Contextual Transformer (CoT) block. The model is composed
of an input embedding layer, the GAM module, the CoT block,
and a classification head.

The input tensor X € RVXTXF ig first passed through a
layer normalization operation to stabilize training. A linear
transformation projects each time step feature vector x; € R¥
to a higher-dimensional latent space R?, with d = 128. This
yields an embedded sequence H € RN *Txd,

The GAM is then applied to the embedded sequence to en-
hance salient features across both channel and temporal di-
mensions. Channel attention is computed by first applying
global average pooling across time:

1 T
=—Y H,eR?
c th:; t €

This vector is passed through a bottleneck multi-layer per-
ceptron (MLP) with shared weights:

ae = o(Wa - tanh(W; - ¢)) € R?

where W, € R¥>*? W, € R¥*9, d' < d, and o(-) is the
sigmoid activation. Each channel in H is then scaled by the
corresponding element in a..

For temporal attention, a one-dimensional convolution is ap-
plied along the temporal axis to compute a sequence-level at-
tention mask a; € R, which is also passed through a sigmoid
activation. The input is then element-wise multiplied with both
the channel and temporal attention outputs:

H=H06a O a

The recalibrated feature sequence H’ is subsequently fed
into the Contextual Transformer block. Unlike classical self-
attention, the CoT block generates contextual keys using
grouped one-dimensional convolutions. The query, key, and
value matrices are obtained as follows:

Q. K,V =WoH \WrH ,WyH' € RV*4xT

A local context representation C' is extracted from K via
grouped convolution:

C' = ConVrouped (K)

The attention score at each time step is computed using the
dot product between the query and its corresponding contex-
tual key, normalized by the dimension size:

)

The final attended output is then computed as:

o = softmax <

Zy =0y - V;

This output is projected back to the original hidden dimen-
sion using a point-wise convolution.

Following the CoT block, an adaptive average pooling layer
aggregates the temporal outputs into a single feature vector
z € R?. This vector is passed through a fully connected clas-
sifier consisting of two linear layers with ReLU activation in
between. The final output is a two-dimensional logit vector for
binary classification.

3. Training Strategy

To address class imbalance in the dataset, a weighted cross-
entropy loss is employed. Let y € {0, 1} be the ground truth
label and p,, the predicted probability. The loss is defined as:

L(y,p) = —woyo log(po) — w1y1 log(p1)

where wq and w; are class weights computed inversely pro-
portional to class frequencies in the training set.

The model is trained using the Adam optimizer with a learn-
ing rate of 10~%. Gradient clipping with a threshold of 1.0 is
applied to prevent gradient explosion. The batch size is set to
32, and the model is trained for five epochs.

The dataset is randomly split into training and validation
sets with an 80:20 ratio. At the end of each epoch, perfor-
mance is evaluated on the validation set using standard clas-
sification metrics: accuracy, precision, recall, and Fl-score.
These metrics provide a comprehensive view of the model’s
ability to distinguish between licit and illicit transactions un-
der class imbalance conditions.

Table 1: Model hyperparameters and training configuration
used in the GAM-CoT Transformer.

Parameter Value

Input feature dimension (per transaction)

Sequence length (time steps per txId) 10
Embedding dimension 128
GAM reduction ratio (bottleneck) 8
Contextual Transformer heads 4
Context convolution kernel size 3
Optimizer Adam
Learning rate 0.0001
Gradient clipping threshold 1.0
Batch size 32
Training epochs 5
Train/Validation split 80% / 20%

F (based on dataset)

4 Results

Table 2 summarizes the performance of several baseline mod-
els alongside the proposed GAM-CoT Transformer on the task
of classifying licit and illicit blockchain transactions. Each
model was trained and evaluated under identical data splits
(80% training, 20% validation), using preprocessed sequences
with a fixed temporal window of 10 time steps per transaction
ID.
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Table 2: Performance comparison between the proposed GAM
on the illicit transaction detection task.

-CoT Transformer model and baseline machine learning methods

Model Precision Recall F1 Score Micro-F1 Accuracy
Random Forest 0.965 0.719 0.824 0.980 0.975
XGBoost 0.922 0.730 0.815 0.978 0.970
LightGBM 0.608 0.740 0.667 0.951 0.940
Multilayer Perceptron (MLP) 0.622 0.597 0.609 0.949 0.935
Logistic Regression 0.323 0.704 0.443 0.883 0.890
GAM-CoT Transformer (Ours) 0.939 0.932 0.936 0.978 0.977

The results indicate that while traditional ensemble methods
such as Random Forest and XGBoost achieve high precision,
their recall performance is limited, likely due to overfitting
to the dominant class. In contrast, the proposed GAM-CoT
Transformer demonstrates a balanced and robust performance
across all metrics, achieving a precision of , recall of 0.932,
and F1 score of 0.936. Notably, the model maintains a micro-
F1 0.978 and accuracy of 0.977, suggesting strong generaliza-
tion to imbalanced classification scenarios. This highlights the
effectiveness of integrating both global and contextual atten-
tion mechanisms for temporal modeling in transaction behav-
ior analysis.

5 Discussion

The experimental results presented in this study highlight the
advantages of integrating attention-based mechanisms into the
modeling of transactional time-series data for the purpose of
detecting illicit activities on the blockchain. The proposed
GAM-CoT Transformer architecture exhibits superior perfor-
mance across multiple evaluation metrics, particularly in re-
call and F1-score, which are critical for effectively identifying
minority-class illicit transactions.

One of the central challenges in blockchain transaction clas-
sification is the pronounced class imbalance, where licit trans-
actions vastly outnumber illicit ones. Traditional machine
learning models such as Random Forest and XGBoost often
exhibit high overall accuracy due to their alignment with the
dominant class distribution, but they typically underperform
in detecting rare but important illicit behaviors. Our proposed
model addresses this issue by incorporating a weighted loss
function, where the contribution of the minority class to the
gradient updates is amplified. This strategy enables the net-
work to remain sensitive to illicit patterns without degrading
performance on the majority class.

Another key factor contributing to the model’s performance
is the inclusion of the Global Attention Module (GAM). By
explicitly modeling both channel-wise and temporal attention,
GAM allows the network to selectively enhance or suppress
different input features at each time step. This is particularly
beneficial in financial time-series data, where only certain vari-
ables or moments in time may be indicative of suspicious be-

havior. Unlike static feature selection or conventional atten-
tion, GAM dynamically adjusts its weighting during training,
offering greater adaptability to shifting transaction patterns.

The Contextual Transformer (CoT) block further improves
the model’s representational capacity by replacing full self-
attention with grouped convolutions that capture local context.
This design choice is grounded in the observation that illicit
behaviors often manifest in short bursts of anomalous activity,
such as rapid transfers, address chaining, or unusual gas usage.
CoT effectively encodes these localized dependencies while
maintaining computational efficiency, especially in scenarios
involving short and fixed-length sequences, as is the case with
our 10-step transaction windows.

In addition to its predictive performance, the proposed ar-
chitecture demonstrates favorable training dynamics. The
model converges rapidly within a small number of epochs,
indicating a high degree of data efficiency and robustness to
initialization. Its reliance on minimal feature engineering and
its independence from wallet-level graph representations also
make it a practical solution for deployment in real-world set-
tings, where label noise and incomplete data are common.

Beyond blockchain-based anomaly detection, the architec-
ture of the GAM-CoT Transformer holds significant promise
for broader financial fraud detection scenarios, such as credit
card fraud, transaction monitoring in payment gateways, and
anti-money laundering (AML) systems. These applications
often involve high-frequency transactional data with tempo-
ral irregularities, abrupt behavioral changes, and class imbal-
ance—characteristics closely aligned with blockchain transac-
tion data. In such environments, it is crucial to identify sub-
tle patterns indicative of fraudulent behavior, such as sudden
spending spikes, geographically inconsistent purchases, or de-
viations from user-specific spending habits.

The dual-attention mechanisms of the GAM-CoT Trans-
former enable the model to focus on critical transaction fea-
tures and pinpoint suspicious temporal segments within trans-
action sequences. For example, the Global Attention Mod-
ule can assign higher importance to features like transaction
amount, location, or merchant category when such attributes
deviate from normal behavior. Meanwhile, the Contextual
Transformer captures short-term temporal anomalies that are
often characteristic of fraud, such as rapid consecutive high-
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value transactions or unusual nighttime activity.

Furthermore, traditional rule-based systems or static thresh-
olding techniques, which are still widely used in the financial
sector, tend to yield high false-positive rates and require fre-
quent manual updates. In contrast, our framework offers a
data-driven, adaptive approach that can generalize across dif-
ferent fraud types and adapt to evolving fraud tactics. This
positions the GAM-CoT Transformer as a valuable tool not
only in decentralized finance but also in centralized financial
systems seeking intelligent, scalable, and interpretable fraud
detection capabilities.

In parallel, privacy preservation is becoming increasingly
vital in both financial and consumer applications[25]. With
the emergence of strict data protection regulations such as
GDPR and financial compliance standards, it is imperative
for Al systems to operate in privacy-sensitive environments.
The GAM-CoT Transformer’s modular and lightweight design
makes it a suitable candidate for federated learning scenar-
ios, where models are trained across distributed clients with-
out centralized data aggregation. Furthermore, the frame-
work can be extended with differential privacy techniques
to safeguard individual transaction records during model
training and inference. Such privacy-preserving adaptations
would make the model even more suitable for deployment in
regulatory-compliant environments, including on-chain mon-
itoring, exchange-level surveillance, and enterprise fraud de-
tection platforms.

Beyond its technical contributions, the proposed framework
directly supports the workflows of data and business analysts
in fraud and risk teams. Its modular architecture and empha-
sis on sequence-level anomaly detection make it well-suited
for tasks such as prioritizing high-risk alerts, segmenting sus-
picious user cohorts, and refining rule-based systems with
model-informed thresholds. By surfacing temporal irregulari-
ties and key transaction features, the model enhances analysts’
investigative precision and accelerates incident response[7].
As financial institutions increasingly adopt Al-powered fraud
strategies, frameworks like the GAM-CoT Transformer help
translate machine learning advancements into tangible opera-
tional value

With the increasing use of large models in financial appli-
cations, recent studies have exposed privacy challenges and
compliance risks [24, 2, 16]. Despite its advantages, some
limitations remain. The current approach does not incorpo-
rate relational or structural information inherent in blockchain
networks, such as address-level graphs or transaction chains,
which may provide complementary signals. Also, the fixed
sequence length may limit the model’s ability to capture long-
range behavioral trends. Finally, although the model is com-
putationally lighter than full Transformer architectures, fur-
ther optimizations such as quantization or streaming inference
would be beneficial for real-time, high-throughput environ-
ments.

6 Conclusion

This study presents a novel deep learning framework, the
GAM-CoT Transformer, designed to detect illicit blockchain
transactions by effectively modeling temporal and feature
interactions within transaction sequences. Leveraging the
strengths of a Global Attention Module (GAM) for dynamic
channel and temporal recalibration, and a Contextual Trans-
former (CoT) block for localized context-aware sequence
modeling, the proposed approach addresses several key chal-
lenges inherent in blockchain data: high dimensionality, tem-
poral sparsity, and severe class imbalance.

Through extensive experiments on real-world transac-
tion datasets, we demonstrate that the proposed architec-
ture achieves state-of-the-art performance, particularly in re-
call and Fl-score—metrics critical for uncovering minority
illicit behaviors that traditional models tend to miss. The
model’s strong generalization capability, reflected in a micro-
F1 0.978 and accuracy of 0.977, confirms the robustness of
the attention-based architecture even under limited training
epochs and noisy input conditions.

Unlike standard Transformer models, which suffer from
high computational overhead and lack inductive bias for short
sequences, the integration of convolutional contextual blocks
in our design significantly improves training efficiency with-
out compromising performance. Furthermore, the application
of class-weighted loss functions ensures that minority class
predictions are not suppressed by dominant majority-class pat-
terns—a common issue in blockchain anomaly detection tasks.

Importantly, the framework does not require explicit graph
construction, external wallet-level features, or handcrafted
heuristics. This allows it to be readily deployed in real-time
transaction monitoring systems for exchanges, compliance
tools, or blockchain analytics platforms. The architecture’s
modularity also enables it to be extended with plug-in com-
ponents such as graph neural networks, variational encoders,
or meta-learning strategies for adaptive thresholding. Beyond
decentralized finance, this framework is also applicable to cen-
tralized fraud and credit risk analytics. Its sequence-focused
design and modularity make it suitable for integration into fi-
nancial institutions’ transaction monitoring pipelines, helping
to identify anomalous user behavior, trigger intelligent fraud
alerts, and support adaptive risk scoring models.

In future work, we plan to explore hybrid modeling strate-
gies by integrating address-graph representations alongside
sequence-level modeling. Additionally, deploying the model
in a real-time streaming context and optimizing for latency-
aware environments will be crucial for transitioning this re-
search into production-grade surveillance systems for decen-
tralized financial ecosystems.
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Abstract—With the rapid development of artificial
intelligence technology, its application in the field of criminal
investigation has become an important direction of change in
the investigation model of public security organs. The
embedding of Al technologies such as face recognition, big
data analysis, and behavior prediction has significantly
improved the efficiency of investigation, but it is also
accompanied by many legal risks such as privacy
infringement, algorithm bias, and lack of procedural justice.
Starting from the current status of technology application, this
article systematically analyzes the main legal issues faced by
artificial intelligence in criminal investigation, including the
legal boundaries of personal information protection, the
admissibility of Al evidence, and procedural -control
mechanisms. On this basis, drawing on the legal regulatory
experience of the United States, the European Union, Japan,
Germany and other countries, it is proposed that China should
establish the boundaries of technology use, strengthen data
protection mechanisms, and improve the evidence system and
supervision mechanism through legislation to build a legal
regulatory system for artificial intelligence criminal
investigation that takes into account efficiency and rights
protection. The article aims to provide theoretical support and
institutional reference for the construction of relevant systems
and legal responses in China.

Keywords: artificial intelligence; criminal investigation;
privacy rights; algorithm regulation; legal supervision

1. INTRODUCTION

With the deepening of the new round of scientific and
technological revolution and industrial transformation,
artificial intelligence technology has gradually moved from
the theoretical level to practical application, and has
penetrated into many fields such as social governance, medical
care, education, finance, and transportation. Among them, in
the criminal justice system, especially in the field of criminal
investigation, the intervention of artificial intelligence is
unfolding at an unprecedented speed and depth. Al
technologies represented by face recognition, big data
analysis, behavior prediction, and natural language processing
are being widely used in combating crime, maintaining social
order, and improving case handling efficiency, promoting the
gradual transformation of criminal investigation from the
traditional "manpower + experience-driven" model to the
"technology + data-driven" model. This trend not only
improves the accuracy and efficiency of investigation work,

but also significantly changes the operating logic of traditional
criminal justice. Taking face recognition technology as an
example, public security organs can quickly lock and locate
suspects through a large number of cameras deployed in
public spaces; with the help of big data analysis platforms,
public security personnel can screen and correlate massive
social information, thereby constructing a suspect's social
relationship map and behavior trajectory; and with the help of
Al algorithms, the system can even conduct "predictive
policing" before a case occurs to assess potential high-risk
individuals and high-risk areas. The application of these new
technologies not only improves the efficiency of solving cases,
but also effectively saves manpower and resource costs,
demonstrating strong technological governance capabilities.
However, the rapid intervention of technology has inevitably
raised many legal and ethical issues. First, in the case of
technology abuse or lack of supervision, citizens' personal
information and privacy rights are easily violated. For
example, collecting personal biometric information without
explicit authorization, conducting all-round monitoring of
citizens' daily behavior, and arbitrarily calling private
information in big data platforms may constitute a substantial
violation of the relevant provisions of the "Personal
Information Protection Law of the People's Republic of
China" and the "Civil Code of the People's Republic of
China". Secondly, there is a "black box operation" problem in
the process of data screening and judgment by algorithms.
Due to the lack of transparency and explainability of the
operating mechanisms of many Al systems, when the results
of algorithm judgments are used as criminal evidence, their
legality and fairness are easily questioned, which in turn
affects the procedural justice and substantive justice of the
case. In addition, the data samples used by Al systems often
carry historical biases. If they are not corrected, it is very
likely that specific groups will be misidentified, discriminated
against, or even "labeled", thereby objectively exacerbating
judicial inequality. In the process of deep integration of
artificial intelligence and criminal investigation, investigators
may weaken their subjective analysis and comprehensive
judgment of case facts due to their high dependence on
technology, and show a tendency of "technological
determinism". This is not only easy to lead to the occurrence
of false and wrongful convictions, but also may shake the
basic trust of the public in judicial justice.

In short, the reshaping of the criminal investigation model by
artificial intelligence is an inevitable trend, and the legal
challenges it brings cannot be ignored. Only on the basis of a
comprehensive review of the application scenarios and
potential risks of Al technology, combined with the actual
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construction of China's legal system, and building a scientific,
reasonable and perfect legal regulatory framework, can we
achieve the long-term goal of rule of law in China while
ensuring judicial efficiency and social stability. Technology is
neither good nor bad, the key lies in whether its application
method and institutional regulation can be reasonably in place.
Therefore, how to build a legal normative system that
conforms to China's national conditions, is forward-looking
and operational while promoting intelligent investigation has
become an important topic that urgently needs to be explored
in depth.

2. Research Methods

The application of artificial intelligence in criminal
investigation is a comprehensive research topic with strong
technicality, high degree of interdisciplinary integration, and
increasingly prominent legal disputes. In order to ensure that
this study is scientific and logical in theory and has practical
guiding significance in practice, this paper adheres to the basic
principles of "combining theory with practice" and
"combining comparison with localization" in the selection of
research methods, and comprehensively uses the following
research methods:

2.1. Literature analysis method

The literature analysis method is one of the basic methods
of this study. This paper systematically sorts out the relevant
research results on artificial intelligence in the judicial field,
especially criminal investigation, at home and abroad,
including academic papers, judicial interpretations, legal texts,
policy documents, international conventions and various
technical reports, etc., and extracts the main views and
controversial points of the current academic and practical
circles on this issue, and builds a theoretical framework for the
research based on this. Special attention is paid to the
advanced experience of other countries developed countries
(such as the United States, the United Kingdom, Germany,
etc.) in privacy protection, data security, Al technical
specifications, procedural justice protection, etc., as well as
China's legislative and judicial progress in the legal regulation
of artificial intelligence in recent years, in order to provide
solid literature support and comparative perspectives for this
study.

2.2. Comparative research method

Considering the significant differences in the operating
mechanisms and regulatory models of Al criminal
investigation technology in different countries and legal
systems, this article widely uses comparative research
methods to compare and analyze the similarities, differences,
advantages and disadvantages of Al investigation technology
deployment, legal regulatory framework, and procedural
control mechanisms in China and o

ther countries countries. Through in-depth research on the
legal regulatory mechanisms of the US "predictive policing"
system, the EU "Artificial Intelligence Act", and the British
police face recognition system, we explore the reasonable
factors in their institutional design and explore their
inspiration and limitations for China's institutional
construction, so as to provide theoretical support and practical

reference for China to build a legal regulatory path with local
characteristics.

2.3. Case analysis method

In order to enhance the pertinence and practicality of the
research, this article selects several representative China and
Other countries cases to analyze the application scenarios of
artificial intelligence technology in specific criminal
investigation practices, the legal issues arising, and their
judicial responses. Through the restoration of the cases and
legal analysis, we reveal the legal disputes, power abuse risks,
procedural deviations and other issues that may arise in the
process of Al intervention in investigation. For example, we
analyze the privacy dispute cases caused by the public security
organs in a certain place in China using facial recognition
technology to arrest criminal suspects, as well as the
constitutional review cases in the application of algorithm
prediction systems in the United States, extract common legal
issues from specific events, and further verify the realistic
basis of theoretical analysis.

2.4. Normative analysis method

Normative analysis method is one of the core methods of
this study. Starting from the perspective of jurisprudence and
criminal procedure law, this paper focuses on analyzing the
interactive  relationship between artificial intelligence
technology and current legal norms, including the adaptability
and limitations of the current legal system in the context of Al
application, such as the right of investigation, the right of
privacy, the rules of evidence, and procedural justice. Through
the interpretation of current legal provisions such as the
Criminal Procedure Law, the Personal Information Protection
Law, and the Data Security Law, combined with judicial
interpretations and case handling rules, we analyze the legal
obstacles that Al investigation technology may face in
practice, and further propose specific directions and path
suggestions for the improvement of the legal system.

2.5. Logical deduction and system construction method

On the basis of completing the in-depth analysis of existing
legal provisions and practical problems, this paper will also
use logical deduction and legal system construction methods
to try to propose a set of operational and forward-looking legal
regulation paths for Al criminal investigation. This method
mainly summarizes existing problems, deduces legal relations,
and extracts normative principles, and on this basis builds a
logically self-consistent and structurally complete legal system
recommendation system. This process not only attaches
importance to theoretical consistency, but also takes into
account practical feasibility, reflecting the institutional
construction orientation of the research.

3. Review of China and Other countries research

3.1. Technological development perspective: the current
status of Al deployment in the police system

Against the background of the rapid development of
artificial intelligence, many countries have actively promoted
the deployment and application of Al technology in the police
system, especially in the field of criminal investigation,
aiming to improve law enforcement efficiency, reduce crime
rates and optimize the public security governance structure.
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Internationally, as an important promoter of artificial
intelligence technology, the United States introduced Al
technology into the police system earlier. Police in New York,
Los Angeles, Chicago and other places have deployed
"predictive policing" systems based on Al algorithms.
Through the mining and analysis of historical crime data, early
warning intervention is carried out on potential high-incidence
areas and key personnel. Among them, the "PredPol
(predictive policing)" system is the most representative. It
builds an algorithm model based on variables such as time,
location and crime type to assist the police in the reasonable
deployment of patrol forces. In addition, US law enforcement
agencies widely use technologies such as face recognition,
voice recognition, license plate recognition, and drone
detection to locate, track and collect evidence of suspects. For
example, the US Federal Bureau of Investigation (FBI) has
established the "Next Generation Identification System",
which integrates multiple biometric data such as fingerprints,
faces, and irises to achieve cross-regional and cross-
departmental information sharing and comparison, greatly
improving the efficiency of investigation.

In Europe, the application of Al in the police system is also
accelerating. The Metropolitan Police in the UK once piloted
the use of the Live Facial Recognition system for street
patrols, but at the same time, the technology triggered strong
privacy disputes and legal challenges in the UK. The EU
focuses more on the coordination between technology
deployment and legal ethics. The draft of the "Artificial
Intelligence Act" clearly stipulates that high-risk Al systems
must be subject to strict review, and proposes that technology
development must comply with the principles of
explainability, fairness and controllability, reflecting the high
attention paid to the "responsible use" of Al

In China, the promotion of artificial intelligence technology
in the public security system is particularly rapid, especially in
the fields of face recognition, video surveillance, voice
recognition, semantic analysis and big data combat platforms,
which have achieved a high degree of integration. At present,
most provincial and municipal public security organs in the
country have built "synthetic combat centers" or "intelligence
and command integration platforms", relying on artificial
intelligence and big data analysis tools to conduct dynamic
deployment, trajectory tracing, case-related relationship
analysis and other combat commands. Among them, the
"Skynet Project" and the "Xueliang Project" constitute the
backbone system of the national video surveillance network. A
large number of front-end camera equipment use Al
algorithms to realize face recognition and behavior
recognition, and connect with the public security back-end
database, enhancing the technical prevention and control
capabilities of criminal crimes.

However, it is worth noting that although the Al system has
greatly improved the efficiency of police operations, the
relevant technical deployment has problems such as
generalized application, inconsistent standards, and opaque
algorithms, which are prone to legal risks such as abuse of
rights and privacy leakage. Especially in criminal
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investigations, there is still a lack of systematic institutional
responses to issues such as the legal boundaries of technology,
standardized collection of evidence, and secure storage of
data. Therefore, more and more studies have begun to reflect
deeply and build regulations on Al investigative behavior
from a legal perspective.

3.2. Legal research perspective: Preliminary discussion on
privacy rights, data protection, and procedural justice

The application of artificial intelligence technology in
criminal investigation has aroused the academic community's
attention to a series of legal issues such as privacy rights, data
protection, algorithmic fairness and procedural justice, and
gradually formed an interdisciplinary research trend with
"law-technology integration" as the core.

In terms of privacy rights and data protection, Western
scholars generally advocate that the "minimum necessary
principle” should be used to limit the collection and
processing of personal information by investigative agencies.
Daniel Solove proposed that privacy is not only a "right to be
forgotten", but also a "right to control information flow",
emphasizing that individuals should have the right to decide
how their information is collected, transmitted, analyzed and
stored. Under the guidance of this theory, the European Union
passed the General Data Protection Regulation (GDPR),
established a complete set of personal information protection
systems such as data minimization principles, transparency
principles, consent principles and "right to be forgotten", and
required enterprises and public agencies to review and explain
"automated decision-making" behaviors. This legislation
provides a normative reference for data governance in
criminal investigation activities under the background of
artificial intelligence.

The American academic community is more concerned with
the "conflict between technology and constitutional rights."
Scholars such as Laurence Tribe pointed out that technology
cannot override the Constitution, and the use of Al in criminal
investigations must strictly follow due process, especially
under the premise that the citizens involved have not yet been
convicted, the results of technology cannot be regarded as the
basis for conviction. Many judicial cases (such as Carpenter v.
United States) have emphasized that law enforcement agencies
must obtain legal authorization to obtain electronic data, and
cannot use technology to circumvent traditional search warrant
procedures, which reflects the constitutional review path for
the use of technology.

The Chinese legal community started research on this issue
a little later, but in recent years, it has gradually formed
relatively systematic academic results. On the one hand, some
scholars focus on the risk of infringement of citizens' privacy
rights and personal dignity by Al investigation activities, and
advocate the establishment of bottom-line norms for the use of
technology through basic laws such as the "Personal
Information Protection Law" and the "Data Security Law"; on
the other hand, some studies have proposed that Al's
involvement in the investigation process may challenge
traditional criminal prosecution principles such as "innocent
until proven guilty" and "legality of evidence", and call for the



establishment of special rules and certification mechanisms for
the acceptance of Al evidence. In addition, some practitioners
emphasize the need to introduce an "algorithm audit system"
to ensure that the use of Al systems does not constitute a
disguised means of depriving the defendant of his rights.

At the same time, some studies also focus on the systematic
impact of "algorithmic discrimination" and "technical bias" on
judicial justice. Since Al systems rely on large-scale historical
data for training, these data may contain labeling of specific
groups, regional bias, and even racial discrimination, which in
turn leads to "selective law enforcement", "high-risk group
locking", and "group accidental injury" in Al execution. For
example, a study in the United States found that some
predictive policing systems generally have a high risk
assessment of black groups, which directly affects the
deployment of police forces and law enforcement strategies,
reflecting the problem of "structural injustice” in the
application of technology.

In summary, although the current legal research on the
application of artificial intelligence in criminal investigation at
home and abroad has achieved certain results, it is still in the
exploratory stage overall. Existing studies mostly focus on
principled analysis and value conflict analysis, lack of in-
depth discussion of specific technology usage scenarios, and
have not yet formed a systematic and complete legal
governance framework. Therefore, based on previous
research, this article attempts to systematically analyze the
current status of the use of AI technology in criminal
investigation, legal conflicts, and regulatory paths from the
perspective of technical practice, and strives to provide
theoretical support and institutional reference for the
construction of relevant systems in China.

4. Application of Al in Criminal Investigation and Legal
Implications

4.1. Main Applications of Artificial Intelligence in Criminal
Investigation
The rapid development of artificial intelligence technology
and its deep integration in public security law enforcement are
gradually reshaping the working mechanism of traditional
criminal investigation. Different from the previous case-
handling methods that rely on manual judgment and
experience accumulation, artificial intelligence, with its
powerful data processing capabilities, accurate identification
capabilities and real-time response capabilities, makes
criminal investigation more efficient and technically
supported. The following will expand from four key technical
dimensions to explain its core application scenarios and
functional characteristics in criminal investigation.

4.1.1. Face recognition and behavior recognition technology
4.1.1.1. Public place monitoring and target locking

Face recognition technology is one of the most widely used Al
investigation methods at present. It mainly collects, compares
and recognizes facial features through high-resolution cameras
and deep learning algorithms. This technology is widely
deployed in public security monitoring systems such as the
"Skynet Project" and the "Xueliang Project", realizing 24-hour
video monitoring and key personnel control functions in
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public places such as stations, airports, shopping malls, and
streets. By comparing the captured faces in the surveillance
images with the fugitives, suspects involved in the case, and
key targets in the public security database in real time, the
identity can be confirmed and an early warning can be issued
within a few seconds, greatly improving the efficiency of on-
site crackdown and control.

In addition, behavior recognition technology has developed
rapidly in recent years. It can identify possible violent
behaviors, thefts, or suspicious wandering behaviors by
analyzing human postures, movement patterns, and abnormal
trajectories. For example, some cities have deployed Al
systems to identify abnormal actions such as fighting, falling,
and running. Once the preset threshold is triggered, the system
will automatically issue an alarm and push the image to the
command center to achieve the integration of active
investigation and early warning response.

4.1.1.2. Recognition accuracy and risk of misidentification
Although face recognition and behavior analysis systems have
greatly improved the efficiency of investigation, their
recognition accuracy and risk of misidentification are still key
issues that need to be urgently solved by current technology.
For example, in scenes such as poor lighting, more occlusion,
and fast-moving targets, the recognition accuracy rate drops
significantly; when the face database data is not updated in
time or the data collection quality is not high, "false alarms"
and "missed reports" are also prone to occur, which in turn
affects the fairness of law enforcement. In addition, for
behavior recognition systems, complex human behavior
patterns are highly ambiguous, and the boundaries between
different actions are difficult to clearly define. If there are
deviations in algorithm training, ordinary behaviors may be
"labeled", increasing the frequency of unnecessary law
enforcement intervention and causing misjudgment problems.
4.1.2. Big data and algorithm analysis

4.1.2.1. Automatic generation of case clues and predictive
policing

Big data and algorithm analysis have shown strong case
prediction and clue generation capabilities in criminal
investigations. Public security organs use Al algorithms to
conduct deep learning and statistical analysis of historical case
data by accessing multi-dimensional data sources from
network platforms, banking systems, communication
operators, video surveillance systems, etc., to identify
potential crime patterns, time nodes and high-incidence areas,
and generate predictive reports such as "high-risk area maps"
or "high-frequency crime time periods", thereby realizing
"predictive policing".

This technology is particularly suitable for combating serial
crimes, telecommunications fraud, cybercrime and other case
types with obvious data characteristics. For example, by
modeling the time, area, and content of historical fraud calls,
the fraud-related communication number segments can be
locked in advance; for serial theft cases, the possible next
target area can be analyzed through the path trajectory and
modus operandi to achieve pre-emptive prevention and
control.



4.1.2.2. Social relationship map and suspect portrait
Al systems are also used to construct social relationship maps
and behavioral portraits of criminal suspects to assist
investigators in accurately analyzing their activity patterns and
potential accomplices. By integrating data such as suspects'
communication records, traffic trajectories, financial
transactions, and social media activities, the system can
automatically draw a "social network map" to reveal the
degree of connection and frequency of interaction between
suspects and other persons involved in the case. Such
technologies play an important role in combating mafia
organizations and cross-regional criminal gangs, helping to
expand from the "point" of the case to the "surface" of the
organization and achieve a three-dimensional crackdown.
However, big data analysis relies on algorithm parameter
settings and data input quality when processing unstructured
data. If there is a lack of accurate labeling and review
mechanisms, it may lead to distorted association inferences
and mistakenly lock innocent objects. Therefore, clear
standards still need to be established in data collection, model
training, and explainable algorithms to balance the
relationship between technical efficiency and legal prudence.
4.1.3. Speech recognition and natural language processing
technology

Auxiliary functions of communication monitoring, speech
transcription, and intelligent interrogation systems
In criminal investigations, speech recognition and natural
language processing (NLP) technologies are widely used in
work scenarios such as communication monitoring, on-site
speech recognition, conversation content transcription, and
semantic analysis. For example, law enforcement agencies can
monitor the phone calls of people involved in the case through
authorization, and use Al speech recognition systems to
automatically transcribe the recordings, thereby quickly
locating key information, keywords, and suspicious behaviors,
reducing the time cost of manual monitoring.
In addition, some local public security organs have begun to
pilot the deployment of "intelligent interrogation systems",
combining speech recognition with NLP technology to
identify the confession content of suspects in real time, and
compare semantic associations with case databases to assist
interrogators in judging the authenticity, logical consistency,
and even possible psychological state of the confession
content. For example, if the suspect uses too much
"ambiguous tone" or "evasive expression" or there is an
abnormal pause in the voice waveform, the system will mark it
as a "high-risk statement" and prompt the investigators to
further question.
Although this technology helps improve interrogation
efficiency, it still faces challenges such as dialect diversity,
semantic ambiguity, and context jumps in language semantic
recognition, which may lead to recognition bias. In addition,
the extent of Al intervention and the scope of acceptance in
intelligent interrogation also need to clarify the legal
boundaries and evidence exclusion rules to prevent the abuse
of technology.
4.1.4. Drones and intelligent patrol systems
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Extension of non-contact investigation methods and
enhancement of control capabilities

As an emerging aerial investigation tool, drone systems have
demonstrated powerful functions in crime scene investigation,
fugitive tracking, and key area control. Al-driven drones can
not only take real-time photos from high altitudes, but also
carry modules such as thermal imaging, infrared scanning, and
face recognition to achieve target search and remote
monitoring in complex terrains, especially in mountainous
areas, woodlands, suburbs, and other areas that are difficult for
conventional police forces to cover.

At the same time, ground intelligent patrol robots are also
being piloted in some cities, which can automatically patrol
routes, identify suspicious targets, broadcast warnings, and
transmit real-time data to the command center during specific
periods of time. This type of "intelligent sentinel" helps to
release grassroots police forces and enhance night patrol
coverage.

However, the large-scale deployment of drones and smart
patrol equipment also brings a series of technical and legal
issues: on the one hand, technical security needs to be
strengthened, and there will be risks if the equipment is
hacked or falls out of control; on the other hand, all-weather,
all-round reconnaissance activities may constitute an
infringement on the privacy boundaries of citizens, especially
in the absence of clear legal authorization and procedural
control, it is difficult to ensure the legality and appropriateness
of the use of technology.

4.2. Main legal issues faced in the application of artificial
intelligence

The rapid expansion of artificial intelligence technology in
criminal investigation has shown unique advantages in
improving the efficiency of solving cases, reducing the cost of
investigation, and realizing dynamic supervision. However, at
the same time, it has also caused many deep-seated legal
issues. These problems are mainly manifested in the risk of
infringement of individual rights, insufficient procedural
legitimacy, potential distortion of substantive justice, and the
lag of institutional gaps, which urgently need to be responded
to from the legal, institutional and practical levels. The
following will analyze four major legal issues:

4.2.1. Infringement of personal privacy and data protection
issues

4.2.1.1. Unauthorized collection and abuse issues

The core of artificial intelligence technology relies on the
collection and processing of large amounts of data. Especially
in the field of criminal investigation, investigative agencies
often use facial recognition, voice monitoring, big data
comparison and other means to obtain personal sensitive
information such as biometrics, life trajectories, and
communication records of persons involved in the case and
potential suspects. However, in practice, the data collection
link often lacks a clear legal authorization basis and
procedural control mechanism, and there is a phenomenon of
"collection without notification" and "processing without
authorization", which can easily cause substantial
infringement of citizens' privacy rights.



For example, in some cases, the police automatically collected
facial data through public camera systems and compared it
with the national public security database, without clearly
distinguishing whether the target population was involved in
the case and whether it constituted a legitimate reason for the
collection. At the same time, there was a lack of strict use
restrictions and de-identification of the collected data,
resulting in the "secondary use" of information outside of case
investigation or even commercial circulation, exacerbating the
risk of privacy leakage.

4.2.1.2. Protection and use boundaries of citizen information
The "Civil Code", "Personal Information Protection Law",
"Data Security Law" and other laws and regulations have
made basic provisions for the legal handling of personal
information, but in criminal investigations, the use of citizen
information is often in the tension between "national security"
and '"personal privacy”, with unclear boundaries and
insufficient supervision. For example, the restrictive
provisions on the exercise of investigative power in the
"Criminal Procedure Law" are relatively principled, and no
targeted constraints are made on specific collection methods in
Al technology (such as remote monitoring, algorithm
profiling, and relationship map modeling), resulting in the
"gray area" of technology use becoming a hotbed for power
expansion.

At the same time, citizens’ rights to know, object and remedy
regarding the collection, processing and use of their
information lack effective protection, and it is almost
impossible to question the decision of Al system in criminal
proceedings, which also weakens the procedural basis of

privacy protection.
4.2.2. Algorithmic bias and discrimination
4.2.2.1. Imbalance of algorithm training data and

discriminatory consequences

The application of Al system in criminal investigation relies
heavily on massive training data and model learning process.
However, these training data are often constructed based on
historical cases, past law enforcement records and even social
prejudices, which can easily lead to structural bias in the
output of the algorithm. For example, the predictive policing
algorithms used by the early US police (such as the COMPAS
system) tend to over-judge the risk of African-American
groups in their scoring, resulting in “algorithmic
reinforcement” of racial discrimination.

In China, because the data resources involved in the case are
concentrated in specific regions, specific populations or
specific types of cases, the algorithm may form a “high-risk
label” for low-income groups, specific occupations or migrant
populations during training, resulting in a shift and misleading
of the focus of law enforcement. For example, the big data
system may use "frequent late return”, "multiple cross-
provincial movements" and "low-frequency financial
activities" as suspicion indicators, and then automatically label
a certain group as "suspicious objects". This labeling thinking
not only infringes on personal dignity, but is also likely to
cause erroneous investigations and even wrongful convictions.
4.2.2.2. Procedural injustice caused by group labeling

49

The bias of the AI system is not only reflected at the
individual level, but also creates group injustice at the
structural level. Driven by algorithms, law enforcement
agencies are prone to implement "preconceived" investigative
tendencies against specific groups, so that some people are
"procedurally labeled" before entering the litigation process,
and lose the right to equal treatment that they should enjoy as
ordinary citizens. Such risks seriously challenge modern
criminal rule of law principles such as "presumption of
innocence" and "individualized justice".

In addition, due to the "black box" nature and technical
monopoly of algorithms, suspects and defense lawyers often
find it difficult to obtain the logical path and data basis of the
algorithm reasoning process, and lack substantive defense
opportunities. This undermines procedural oversight and risks
transforming Al decision-making into an unchallengeable
exercise of authority.

4.2.3. Issues of the legality and admissibility of evidence
4.23.1. Issues of the subject eligibility of Al-generated
evidence

In traditional criminal proceedings, evidence must be obtained
by investigators with legal subject qualifications within the
scope of legal authority. However, Al systems often assume
the function of "active testimony" in criminal investigations,
such as automatically generating "location matching" evidence
between a suspect and the crime scene through an intelligent
recognition system, and extracting "suspicious speech" as the
basis for investigation through a voice analysis system. The
question that arises at this time is: Does the Al system have
the status of a "qualified subject" in the sense of criminal
procedure law?

In addition, there is still great controversy over whether the
evidence generated by Al meets the evidence standards of
"legal source, proper procedure, stable form, and true content".
For example, do automatically generated image recognition
results, behavior judgment reports, semantic analysis
inferences, etc. belong to the type of evidence that is
"verifiable and verifiable"? Is the algorithmic logic in the
process of evidence formation open and verifiable? These are
directly related to the admissibility and probative force of
evidence in court trials.

4.2.3.2. Evaluation of the legality and rationality of Al
intervention in the investigation process

The involvement of AI technology in investigation is
becoming increasingly profound, and some links have even
achieved "dehumanization" operations (such as intelligent
comparison without human intervention, automatic triggering
of arrest mechanisms, etc.). However, according to the
Criminal Procedure Law, investigation activities should be

completed in person by state agency personnel with
investigative powers, and there must be room for
accountability and supervision in the process. The

participation of Al systems often lacks a clear authorization
basis, and the necessary procedural control mechanism is not
set up, which makes it easy to break the boundaries of power
exercise.

In addition, some intelligent systems lack the ability to judge



the specific circumstances of the case, and may make
investigative decisions that do not conform to the legal
principles or proportionality principles due to the rigid setting
of algorithm parameters. Therefore, a legality evaluation
mechanism for Al intervention procedures should be
established to clearly define its scope of application,
applicable procedures, technical boundaries and supervision
paths to prevent it from undermining the fairness of the case
due to technical abuse.

4.2.4. Challenges of criminal procedural justice

4.2.4.1. The legality risk of Al replacing human judgment
Criminal investigation is essentially a process of judging "the
identity, behavior and illegal nature of the suspect", which has
a strong value judgment attribute. In this process, Al systems
replace humans to complete core tasks such as clue analysis,
behavior judgment, and evidence selection, which can easily
weaken the sense of responsibility and judgment of law
enforcement personnel, resulting in the problem of
"technology dependence" or "responsibility shifting". Once a
wrong judgment occurs, the investigative agency may blame
the system's "misjudgment” rather than its own dereliction of
duty, which directly shakes the legal responsibility mechanism
for law enforcement behavior.

More importantly, criminal investigations need to
comprehensively consider non-data factors such as
circumstances, motives, and social background, while Al
systems can only perform quantitative analysis based on
limited parameters, making it difficult to achieve the prudence
and empathy that human justice should have. Relying solely
on Al and making judicial judgments technical and procedural
will inevitably weaken the balance between procedural justice
and humane law enforcement.

4.2.4.2. Impact on "procedural justice" and "substantive
justice"

The widespread embedding of Al technology has improved
the efficiency of case investigation and the rate of evidence
discovery to a certain extent, but it may also pose a substantial
threat to "procedural justice". In the process of evidence
collection, suspect identification, and evidence presentation, if
the AI system lacks openness and questionability, the
procedure will be meaningless, and even if the substantive
conclusion is correct, it will not be able to obtain procedural
legitimacy support.

In addition, the core of procedural justice lies in "visible
justice", and Al systems often operate in an incomprehensible
way. The "inexplicability" of their algorithms and decision
paths makes it difficult for the public to believe their
conclusions, which seriously affects the credibility of the
judiciary.

Therefore, in the context of the continuous development of Al
technology, it is necessary to re-examine the trade-off between
technical efficiency and procedural justice, avoid sacrificing
procedural guarantees in the name of efficiency, and ensure
that the application of Al always serves the basic principles of
criminal rule of law.

4.3. Overseas regulatory experience

Globally, the application of artificial intelligence technology
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in  criminal investigation is gradually = becoming
institutionalized and standardized. Developed countries in
Europe and the United States, as well as countries with
relatively mature legal systems such as Japan and Germany,
have established a certain degree of legal constraints and
procedural guarantee mechanisms in Al investigation
practices, striving to find a balance between efficiency and
rights protection. The regulatory experience of these countries
or regions not only reflects the legal response to technological
development, but also provides important reference for China
to build a legal regulatory system for artificial intelligence
investigation.

4.3.1. The United States: Review mechanism and case practice
for the use of technology

4.3.1.1. Clearview Al case: warning of abuse of facial
recognition technology

The United States started early in the application of Al
investigation, especially in facial recognition technology, big
data policing, predictive algorithms, etc. However, the privacy
infringement and legal disputes brought about by its rapid
technological development are also particularly significant.
Among them, the most representative is the Clearview Al
company incident.

Clearview Al has developed a powerful facial recognition
engine that provides investigative support for US law
enforcement agencies by capturing billions of facial images on
social media. Although this technology has been used to
quickly identify suspects in some criminal cases, it has also
triggered large-scale lawsuits on issues such as "unauthorized
capture", "unnotified use", and "information abuse". Several
states (such as California and Illinois) have filed lawsuits
against it under the Biometric Information Privacy Act
(BIPA). The courts generally believe that facial recognition
technology constitutes sensitive use of personal information
and must obtain explicit consent from users in advance.

This case reflects that: on the one hand, US law restricts the
abuse of technology through ex post judicial relief
mechanisms; on the other hand, state legislation under its
decentralized system has pre-regulated the "technical
boundaries". This has important implications for China - while
introducing new technologies, we should simultaneously
promote the construction of legislation and relief mechanisms
to prevent the legal vacuum of "use first and then rule".
4.3.1.2. The institutional checks and balances function of the
exclusionary rule

The "exclusionary rule" in US criminal proceedings provides a
key procedural constraint for limiting Al's involvement in
investigations. In classic cases such as Miranda v. Arizona, the
Supreme Court emphasized that evidence obtained without
procedural legitimacy cannot be used in court. This principle
also applies to the field of Al investigation evidence.

For example, in some state cases, if the police obtain clues
through an unauthorized automatic facial recognition system
and further conduct a search, the court will consider whether
the technology violates the "prohibition of unreasonable
searches" principle in the Fourth Amendment. If it is
determined to be an illegal search, the subsequent evidence



obtained will also be excluded. This mechanism has
established an important counter-logical logic for technical
investigation power in practice, which helps prevent the
unlimited expansion of Al means under the unsupervised
power.

4.3.2. EU: Regulation of AI use under the background of
GDPR

4.3.2.1. Institutional design of data protection and "right to be
forgotten"

The EU is known for its strict legislation on personal
information protection. The General Data Protection
Regulation (GDPR), which officially came into effect in 2018,
has set a high standard for the legal and compliant use of Al
technology around the world. GDPR not only stipulates core
rules such as "data minimization", "purpose limitation" and
"legality principle", but also enhances individuals' control over
their own information through systems such as "right to be
forgotten" and "data portability".

In the field of AI investigation, this means that if law
enforcement agencies use technologies such as facial
recognition and voice analysis, they must ensure the legality
of the collection process, the clarity of the data use, and accept
the review of independent supervisory agencies (such as data
protection commissioners). If the data subject raises an
objection or finds that the data is misused, he or she has the
right to request deletion, restriction of processing or lodge a
complaint.

GDPR has set clear boundaries for Al technology through the
institutionalized "informed consent-restriction-relief" process,
and particularly emphasizes the priority of personal dignity
and privacy rights. When building a regulatory mechanism for
Al investigation technology, China should draw on the
"rights-dominated” design concept in its data protection
system and establish a multi-dimensional personal information
rights protection system.

4.3.2.2. Draft of the European Union Artificial Intelligence
Act

In 2021, the European Commission issued the "Draft Artificial
Intelligence Act", marking the launch of the world's first
special legislation to systematically regulate Al technology.
The bill is centered on the principle of "risk orientation" and
divides Al systems into four categories: "unacceptable risk",
"high risk", "limited risk" and "minimum risk", and puts
forward strict access and transparency requirements for high-
risk Al systems (such as facial recognition and behavior
prediction).

In the field of criminal investigation, the draft AI bill
explicitly restricts the use of '"real-time remote face
recognition systems", allowing them to be implemented only
under conditions such as "specific authorization", "public
interest" and "court control", and requires all usage records to
be subject to independent supervision. This practice reflects
the institutional design of a balance mechanism between
national security and human rights protection.

The draft also requires that all high-risk Al systems must have
"explainability", "human controllability" and "data audit
mechanism" to ensure that the system output has legal
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legitimacy and error correction mechanism. This provides a
model for the design of China's future Al legal regulatory
system: that is, not only to be based on data compliance, but
also to achieve algorithm supervision, responsibility
traceability and process auditability.

4.3.3. Japan and Germany: Institutional coordination between
police technology and investigative procedures

4.3.3.1. Japan: Technology use relies on "prior permission"
and "procedural review"

Japan is more cautious in the application of AI technology,
especially in criminal investigations. Its legal system
emphasizes the procedural legitimacy of police behavior and
the judicial review mechanism. According to the relevant
provisions of the Criminal Procedure Law and the Police Law,
the police must obtain a warrant issued by the court and
provide detailed descriptions of the collection behavior before
using large-scale monitoring, listening equipment or biometric
systems.

In addition, Japan's public security agencies have introduced
an "expert review mechanism" to conduct ethical and legal
feasibility assessments on the deployment of new technology
systems, emphasizing that the technology system should
ensure "minimum infringement of citizens' basic rights." This
system effectively avoids the "regulatory lag" problem caused
by the rapid application of technology and ensures that police
technology behavior is always within the framework of the
rule of law.

4.3.3.2. Germany: Emphasis on the clarity of legal
authorization and power supervision mechanism

As a continental legal country, Germany attaches great
importance to the boundary between police power and
technology use. The German Federal Data Protection Act, the
Criminal Investigation Procedure Code and other laws clearly
stipulate that the use of technical means must have "specific
statutory authorization" and be subject to the "principle of
proportionality”, "principle of necessity” and "principle of
minimum infringement".

In practice, the German Constitutional Court has repeatedly
reviewed the constitutionality of technical means. For
example, in the famous "online monitoring case", the court
ruled that the state may not conduct automated monitoring of
citizens' online behavior without explicit authorization,
emphasizing that the state's technical behavior must be subject
to effective supervision by the judiciary. In addition, Germany
has established mechanisms such as the "Federal
Commissioner for Freedom of Information" and the "Data
Protection Officer" to achieve external supervision and public
accountability of police technical behavior, effectively
ensuring that procedural fairness and basic rights are not
eroded by technology.

5.Suggestion for Path to Building a Legal Regulatory System
for Criminal Investigation of Artificial Intelligence

With the continuous deepening of the application of artificial
intelligence in criminal investigation, its advantages in
improving  investigation  efficiency and  expanding
investigation  capabilities have become increasingly
prominent. But at the same time, the lagging problem of the



relevant legal system has become increasingly prominent.
How to strike a balance between technological innovation and
legal governance, both to ensure the effective exercise of the
state's criminal judicial power and to protect the basic rights of
citizens from being abused by technology, is an important
issue that China urgently needs to solve. This chapter will
propose a specific path to building a legal regulatory system
for criminal investigation of artificial intelligence in China
from four dimensions: setting legal boundaries, protecting
personal data, improving evidence rules, and building a
supervision mechanism.

5.1 Clarify the legal boundaries of technology application
5.1.1. Clearly stipulate the types of cases and procedural links
to which Al can be applied in legislation

At present, China has not yet made a clear legal definition of
the involvement of artificial intelligence in criminal
investigation activities, resulting in the risk of generalization
and expansion of the use of technology in practice. To this
end, the scope of application, case types and procedural links
of artificial intelligence technology in criminal investigations
should be clarified through the formulation or revision of legal
documents such as the Criminal Procedure Law, the People's
Police Law, the Data Security Law, and the Artificial
Intelligence Law (Draft), and the legal boundaries of "what
can be done", "what cannot be done" and "what should be
reviewed" should be defined.

For example, it can be clearly stipulated that highly sensitive
Al methods such as facial recognition and predictive analysis
can only be used in specific serious criminal cases, under court
authorization or prosecutorial supervision. At the same time,
the investigation link involving technology should be limited
to auxiliary procedures such as "clue acquisition", "suspect
portrait" and "intelligence analysis", rather than replacing
substantive judgments or replacing the subjective judgments
of investigators.

5.1.2. Establish the application standards of the "proportional
principle" and the "minimum infringement principle"
Referring to other countries experience, China should
incorporate the "proportional principle" and the "minimum
infringement principle" into the legal application standards for
artificial intelligence criminal investigations as the basic
principles for measuring the legality and legitimacy of
technology use.

Specifically, when deciding whether to use Al technology, the
investigative agency should comprehensively consider factors
such as the degree of infringement of personal rights by
technical means, the nature and severity of the case, whether
there are alternative less infringing means available, and
whether legal authorization has been obtained. For highly
sensitive means such as big data dynamic tracking and face
recognition, more stringent start-up conditions and approval
procedures should be set to ensure that the use of technology
does not exceed its necessity and rationality.

5.2. Strengthen the protection mechanism for personal data
5.2.1. Introduce the principle of technical transparency and the
mechanism of information use traceability

The essence of artificial intelligence criminal investigation

technology is the extensive processing and in-depth mining of
data, so a systematic data protection mechanism must be
established. First of all, the "principle of technical
transparency” should be established in legislation, requiring
that any Al system used in criminal investigation must have a
technical structure with verifiable data sources, explainable
processing processes, and recordable operating behaviors. At
the same time, the "information use traceability mechanism"
should be introduced to achieve a full-chain record of each
data call, analysis, storage and sharing, which is convenient
for post-event review and responsibility tracing.

This move not only helps to protect citizens' right to know and
right to object to the use of their own data, but also encourages
law enforcement personnel to use technology in accordance
with laws and regulations to reduce the risk of abuse.

5.2.2. Build a citizen-centered data use consent mechanism

In non-emergency situations, we should promote the
establishment of a citizen-centered data authorization
mechanism. In particular, for biometric information such as
images, voiceprints, and locations of people not involved in
the case, informed consent should be obtained in advance, and
individuals should be allowed to object to the collection of
information or request deletion. For data collected in public
security video surveillance systems, their purpose of use,
storage time, and access rights should also be clearly defined.
At the same time, industry supervision and judicial
supervision of Al data collection should be strengthened, and
an "information rights complaint channel" should be
established to ensure that citizens have effective remedies
when they find that their data is used illegally.

5.3. Improve evidence rules and procedural guarantees

5.3.1. Clarify the admissibility standards and certification
process of Al-generated evidence

As Al technology is widely used in investigation links such as
suspect positioning, scene restoration, and audio and video
analysis, the information it generates will inevitably enter the
judicial trial process and become the basis for the final
decision. At this time, the admissibility of Al-generated
evidence has become a core legal issue.

The current Criminal Procedure Law and Judicial
Interpretation of the People's Court in China have not yet
clarified the legal position of Al-generated data as criminal
evidence. Therefore, it is urgent to clarify its nature of
evidence, the standard for evaluating the probative force and
the process of legality certification from the level of
legislation and judicial interpretation.

Specifically, the following systems can be established:
Technical source review system: All Al-generated evidence
must be accompanied by software source description,
algorithm description and equipment registration information.
Verifiability mechanism: Ensure the originality, integrity and
reproducibility of evidence, and avoid tampering and
falsification in the middle.

Expert assisted evaluation mechanism: Third-party technical
experts independently evaluate the reliability of Al evidence
and issue professional reports.

5.3.2. Introduce the principles of "algorithmic explainability"
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and "human final decision-making responsibility"

The process of Al participating in investigation should not
completely replace human judgment, otherwise it is very easy
to lead to the lack of procedural justice. To this end, the
"algorithmic explainability principle" should be established in
the system, requiring all AI models used in criminal
investigation to explain their logical paths and reasoning basis,
so as to avoid "black box decision-making" from becoming a
judicial reference.

At the same time, the "principle of human ultimate decision-
making responsibility” should be clarified, that is, no matter
how detailed the clues and judgments provided by Al
technology are, the final legal judgment and procedural
advancement responsibility should still be borne by
investigators and judicial personnel. Al is only an auxiliary
tool and cannot independently lead the case process. This
principle not only helps to ensure the traceability of judicial
responsibility, but also meets the fundamental requirements of
procedural justice.
5.4. Establish an
mechanism

5.4.1. Set up a technical ethics committee and an expert
review group

A special "artificial intelligence technology ethics review
committee" or "AI technology legal risk assessment expert
group” should be established in public security organs,
procuratorates and national judicial institutions to conduct
prior review and post-evaluation of Al systems to be put into
the field of investigation.

The members of the committee should include a diverse group
of legal experts, technical experts, ethicists, data protection
officers, etc., to conduct a comprehensive review of the
legality, rationality, data sources, potential biases and other
aspects of Al technology, and put forward feasibility reports
and regulatory recommendations.

5.4.2. Introduce a check and balance mechanism of multiple
subjects (lawyers, technicians, judges)

The compliance operation of Al investigative means not only
relies on technical supervision mechanisms, but also requires
procedural supervision through checks and balances between
legal professional groups. In the case, defense lawyers should
have the right to question Al technology evidence and review
algorithms; technicians should provide professional analysis
as a neutral third party; and judges should be responsible for
substantive review of the admissibility of Al evidence.

In addition, courts and procuratorates should be encouraged to
set up "Al evidence special review teams" to train judicial
personnel with technical backgrounds so that they can
understand and judge the formation process and legal effect of
Al evidence. Through the linkage of the three parties, closed-
loop supervision of the legal use of Al technology can be
achieved to prevent technical means from becoming a tool to
cover up the abuse of power.

independent supervision and review
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