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Abstract

As China has emerged as one of the leading exporters
of apples globally, the shortage of agricultural labor has
posed a significant challenge for the apple industry’s
growth. To address the issue of image recognition for
robotic apple picking in complex orchard settings, this
paper combines computerized image processing and deep
learning concepts to propose a detection model based on
YOLOv5. By implementing image preprocessing tech-
niques and optimizing the loss function, the study suc-
cessfully achieves accurate extraction and recognition of
apple image features. The experimental findings demon-
strate the high performance and accuracy of the proposed
method in apple picking tasks, offering valuable support
for the advancement of robotic automated picking sys-
tems. Future research endeavors will focus on further re-
fining the algorithm to enhance efficiency in real-world
production settings. The improved OLOv5 Detection
Models proposed in this article can be applied in fields
such as industrial detection, intelligent traffic signal con-
trol, and sports events.

Index Terms—YOLOv5 detection model, digital image pro-
cessing, apple feature extraction and recognition, labelImg

1 Introduction

China, as the world’s largest exporter of apples, has most lo-
cal farmers growing apples in their own orchards. During the
apple picking season, a significant number of workers are re-
quired to harvest ripe apples. The rapid urbanization in China,
along with an aging agricultural workforce and a large portion
of young individuals seeking work opportunities elsewhere,
has resulted in labor shortages during this crucial season[1].
To address this issue, China has been developing apple-picking
robots since 2011, making notable advancements. However,
existing robots often struggle to accurately identify various
obstacles in the orchard environment, such as ’leaf shading’,
’branch shading’, ’fruit shading’, and ’mixed shading’. With-
out precise judgment based on the actual conditions, harvest-
ing directly can lead to significant damage to the fruits, as well
as potential harm to the robotic arm and the workers. This can
negatively impact both harvesting efficiency and fruit quality,

resulting in substantial losses. Furthermore, the accurate iden-
tification and classification of harvested fruits is crucial for
subsequent sorting, processing, packaging, and transportation.
Moreover, the similarity in color, shape, and size between ap-
ples and other fruits poses a challenge for apple-picking robots
in accurately distinguishing between them.

At present, many scholars have studied this problem. Rele-
vant studies mainly include:Wang Dandan etal[2] further ana-
lyzed the problems in the vision system of apple picking robot
to provide reference for the in-depth study of the vision sys-
tem of apple picking robot.Ka-pach etal[3] investigated the
apple color detection method, but the algorithm detection ef-
fect is not ideal for immature apples or the situation of having
branches and leaves blocking, and apples are similar to the
background, and so on. Cao Chunqing etal [4] realized accu-
rate recognition and 3D localization of apples in multiple natu-
ral scenes by fusing YOLOv3 and binocular vision algorithms.
Zhao De’an etal [5] proposed a YOLO deep convolutional neu-
ral network-based localization method for robotic apple pick-
ing in complex backgrounds, using optimized YOLOv3 deep
convolutional neural network to locate apples, and achieved
apple recognition and localization in complex environments.
Cao Zhipeng etal [6] used YOLOv4 neural network can rec-
ognize apples better, but the recognition speed of YOLOv4 is
low, which can’t meet the demand of real-time picking. The
above methods perform well in recognizing apple targets, but
they require high computational resources.

From the above research, we found that these methods are
difficult to achieve fast and accurate identification and local-
ization. It will be interesting to study what happens to a
method if it not only enables quick recognition but also en-
sures precise localization. The proposed approach involves
developing an apple image recognition model using the depth-
separable convolutional YOLOv5 model, with optimized loss
functions to enhance speed and accuracy in recognizing apples
in complex environments. This advancement further facili-
tates the practical implementation of domestic apple picking
robots. By analyzing labeled apple images and extracting rel-
evant features, a high recognition rate, speed, and accuracy are
achieved. Moreover, data analysis of the images enables au-
tomatic calculation of the number, location, maturity, and es-
timated quality of apples, thereby improving fruit recognition
rates. The results obtained exhibit high precision and recall
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rates of 99.08% and 99.3%, respectively. This research holds
significant implications for the advancement of robotic apple
picking technology in China.

2 Image Preprocessing

2.1 Description of the experimental dataset

To ensure the complexity of the apple image data, this pa-
per uses the dataset of the 13th APMCM Asia-Pacific Re-
gional Undergraduate Mathematical Modeling Competition
problemA, 2023.There are three subsets of this dataset and
they are: subset 1, subset 2 and subset 3. The basics are as
follows:

Subset 1 is a ripe apple image dataset containing 200 images
of ripe apples, each with a size of 270 * 180 pixels. Some
screenshots of Subset 1 are shown in Fig.1:

Figure 1: Mature apple image datasets

Subset 2 is a fruit picking image dataset containing 20705
images of different picking fruits, each with known labels and
classifications, with a size of 270 * 180 pixels. Some of the
screenshots in Subset 2 are as requested in Fig.2, which in-
cludes apples, cactus fruits, pears, plums and tomatoes.

Figure 2: Fruit picking image dataset

Subset 3 shows the labeled dataset containing 20705 images
of different picked fruits, each with a size of 270 * 180 pixels,
but with unknown labels and classifications. Some screenshots
of Subset 3 are shown in Fig.3:

Figure 3: Tagged data sets

2.2 Original Image Information

In the apple images given in Subset 1, there are a total of 200
images, all of which have pixels of 270 x 185. The image file
was taken at basically the same time and with sufficient light.
However, the images are divided into four parts; a portion of
the ripe red apples have problems such as part of the image be-
ing blurred, overexposed or underexposed, and shadows being
blocked by leafy branches; a portion of the apples have people
blocking them; a portion of the images are images of immature
green apples or blossom bones; and a portion of the images are
of other fruits. Some of the images are shown in Fig.4:

Figure 4: Example of an image from part of the subset

The above types of images will affect the feature extraction
of apples, so it is necessary to pre-process the apple image
in Subset 1 with image denoising, image enhancement, color
space conversion, etc. to enhance the contrast of the image.

2.3 Image preprocessing methods

The steps of image preprocessing are shown in Fig.5:

Figure 5: Steps in image preprocessing

Among them, we use median filtering method, inverse
sharpening mask method of image denoising, enhancement, to
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avoid the image blurring and other problems to interfere with
the later for the color, shape and other features of the apple
extraction.

2.4 Rating system

In order to judge the advantages and disadvantages of the pre-
processed images, standard deviation standrad and structural
similarity SSIM are selected as the evaluation indexes of the
preprocessing results. SSIM index is mainly from the bright-
ness, contrast and structure of three aspects to measure the de-
gree of similarity between the two images, the value range is
[0,1]. The SSIM index mainly measures the degree of similar-
ity between two images from three aspects: brightness, con-
trast and structure, and the value range is [0,1], the larger the
SSIM value is, the more similar the structure of the two images
is. The calculation formula is shown in equation (2.1):

SSIM =
(2µxµy + c1) (2ωxy + c2)(

µ2
x + µ2

y + c1
) (

ω2
x + ω2

y + c2
) (1)

where x and y denote the enhanced and real images, respec-
tively, µ denotes the pixel mean of the image, and ω is the
variance of the image. c1 and c2 are 0.0001 and 0.0009, re-
spectively.

The standard deviation measures the degree of variation in
the pixel values of an image and assesses the contrast and
sharpness of the image. Here pixel mean can be used to mea-
sure the overall brightness of an image, the higher the pixel
mean, the sharper the image. Suppose that there is a data set
of Xi, i → {1, 2, . . . , n} The standard deviation of this data
set is:

std =

√∑n
i=1

(
Xi ↑ X̄

)2

n
=

√∑n
i=1 X

2
i

n
↑ X̄2. (2)

2.5 Pre-processing results

(i) Image denoising

Upon comparing a portion of the original image with the
denoised image as illustrated in Fig.6:, it is evident that the
denoised apple image exhibits greater clarity than the origi-
nal image. Additionally, the shape contour is more distinctly
separated from the background in the denoised image.

(ii) Image Enhancement Processing

It can be seen in Fig.7that the difference between the apple
and the background after image enhancement is obvious, and
at the same time, it can better retain the detailed information
in the original image to generate a higher quality image, and
does not appear more serious distortion.

(iii) Image conversion to RGB format

As can be seen from Fig.8, there is little difference between
the RGB-converted image and the original image in terms of
sharpness and contrast.

Figure 6: Image denoising

Figure 7: Comparison graph after image enhancement process

Figure 8: Comparison of original image and RGB image

2.6 Image Processing Evaluation

In order to quantitatively analyze the three preprocesses, the
SSIM values of each of the three preprocesses were calculated
during the experiments to evaluate the enhancement of the im-
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ages. The experimental results are shown in Table 1, where the
data are selected from the dataset in Subset 1.

Table 1: SSIM metrics for three preprocessing methods

Preprocessing methods SSIM
Denoising 0.5143

Image enhancement 0.83345
RGB 0.13506

Table 1 lists the results of structural similarity calculations
for different treatments, from which it can be seen that the
quality of the generated images is improved by using the three
preprocessing to enhance the apple images. In terms of SSIM
metrics, image enhancement improves 0.319 and 0.698 com-
pared to the two models of direct grayscale processing and
image denoising, indicating that the images generated by the
image enhancement process are less affected by noise, and the
visual effect and brightness of the images are significantly im-
proved.

Table 2: Standard deviation comparison

Preprocessing methods Average ixels values of the original image Average pixel value of processed image
Denoising 112.39

Image enhancement 106.34 112.84
RGB 110.34

Table 2 lists the standard deviation results of the different
treatments, compared with the original image pixel mean value
of 106.34, all have obvious improvement, in which the image
denoising and image enhancement in the pixel mean value of
the difference of only 0.45, it shows that the image resolution
of these two processing methods is higher. After comparison
and contrast above, we finally chose the image after image
enhancement processing in improving the image brightness,
contrast and clarity is better, on the basis of which the apple
feature extraction operation is carried out.

2.7 Apple feature extraction based on image

processing

(i) Apple circumference

Perimeter is corrected by counting the number of pixels on
an object’s contour line, in the oblique direction, which pro-
duces errors specific to digitized images, by twice their num-
ber. When scanning the image from left to right and from bot-
tom to top, a pixel value of 1 is found and its neighboring
pixel values (8 neighborhoods) have a different value from it,
the apple counter is added to 1, and the entire image is scanned
to get the perimeter of the apple.Some of the results are shown
in Fig.9.

(ii) Apple color

In this problem, color extraction is done on the basis of im-
age enhancement, so the color features of apples are extracted
from the grayscale histograms of the images, and since there

Figure 9: Perimeter features extracted after partial image en-
hancement

are 200 images in Subset 1, the grayscale values of each im-
age are stored in a matrix. The feature matrix featureMatrix
with size (numImages, 256) where numImages is the num-
ber of grayscale images in the image folder. This feature ma-
trix holds the normalized grayscale histogram features of each
grayscale image. It is shown in Fig.10:

Figure 10: Grayscale histogram

As can be seen from the figure, the gray level of the apple is
concentrated in the [50,150] interval and the number of pixels
is in the [0,500] interval.

3 Fundamental model

3.1 A counting model for labeling apples based

on the labelImg

Before using the YOLOv5 model to detect the position of the
apple, we first need to label the position of the apple in the
image, the labeling tool used here is labelImg, according to
the title of the apple image information given by the use of
the edge of the box is labeled, because the image is blurred or
foliage obscured by the apple using a manual labeling method,
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to improve the accuracy of the number of apples, the position,
and to save the information of the labeling.

The data labeling steps are shown in Fig.11: The labeled

Figure 11: Data annotation content

results are shown in Table 3

Table 3: Number of apples in each image

Image number Number of apples
1 4
2 7
3 15
4 15
... ...

196 21
197 11
198 52
199 2
200 21

Total number 2921

Note: The parts labeled in red indicate the same number of
apples in the image.

3.2 Apple position detection model based on

YOLOv5

(i) Model theory

Determination of apple location requires a target detection
method, and in order to regressively predict the category and
location information of the target object, we use the YOLOv5
target detection model.YOLOv5 uses an end-to-end mecha-
nism to normalize the image and input it into a convolutional
neural network. The network structure is mainly composed of
four parts: the input, the feature extraction network, the Neck
part and the prediction layer. The model structure is shown in
Fig.12.

In this, the input side preprocesses the dataset; the feature
extraction network performs the slicing operation on the im-
age to achieve downsampling of the image without loss of in-
formation; Neck fuses the features of different latitudes; the
prediction layer uses CloUzuo as the bounding box loss func-
tion, and the non-maximum value suppression algorithm filters
the detected target frames. Through the above work, the best
result of detecting the apple location is obtained.

Figure 12: YOLOv5 Object Detection Model Structure

Considering the problems such as foliage occlusion, an
ECA attention module is added after the CSP structure of each
branch of the YOLOv5s neck network respectively, and the
feature information extracted by the feature extraction network
is used to perform adaptive learning of features in the spatial
dimension to strengthen the fusion ability of features.The fea-
ture expression ability of the model in complex scenes is en-
hanced by adding the attention mechanism module to the neck
network, which The interference of irrelevant information is
suppressed, so that the model has better detection results in
detecting the occluded apple target.

The geometric position of the apple is determined: the cen-
ter of mass position of the bounding box is measured with the
bounding box, and the center of mass position formula is as
follows:

(x, y) =

(∑
xi

N
,

∑
yi

N

)
, (3)

where, xi, yi are the coordinates of the pixels in the apple
region and N is the total number of pixels in the region.

(ii) Experimental steps

Before using the YOLOv5 model to detect the apple posi-
tion, we first have to label the position of the apple in the image
using the labelImg tool. We use Subset 1 for training and clas-
sified Subset 2 for model testing and inspection. The steps are
as follows:

Step1: Adding four folders in the data of YOLOv5 direc-
tory, Annotations folder is used to store xml files after labeling
each image with labelImg; Images folder is used to store the
original dataset images that need to be trained in jpg format;
ImageSets folder is used to store files used for training, vali-
dation, and testing after the dataset has been divided into Im-
ageSets folder is used to store the data set divided into files for
training, validation and testing; Labels folder is used to store
the labeled files in txt format after converting the labeled files
in xml format;

Step2: Preparing the dataset, here we need the geometric
position of the apple, so we use all the data in Subset 1 for
training, validation and testing;

Step3: Organizing the results of the data obtained from the
training and draw a 2D scatter plot of the geometric location;

Step4: Taking the obtained geometric position coordinates
and calculate the area of the edge box, which is equivalent to
the 2D area of the apple.
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(iii) Evaluation system

In this paper, Precision (P) and Recall (R) are used as eval-
uation metrics to test the model performance. The evaluation
metrics are calculated by the formulas respectively:

lP =
TP

TP + FP
(4)

lR =
TP

TP + FN
(5)

Where TP denotes the number of samples predicted by the
model to be positive and are positive samples, FP denotes the
number of samples predicted by the model to be positive but
are negative samples, and FN denotes the number of samples
predicted by the model to be positive but are negative samples.

4 Model prediction results

4.1 Calculate the number of apples

According to the apple image features, we use matlab digital
image processing to extract the color and perimeter features
of the apple; however, considering that some images have low
pixels, which results in the apple features not being obvious
in some pictures, the image is first preprocessed before fea-
ture extraction, such as adjusting the brightness and contrast
to make the apple color and edges in the dark distinctly rec-
ognizable, applying filters to remove the noise and performing
apply filters to remove noise, color space conversion, and im-
age enhancement to better distinguish apples and background,
etc.; after preprocessing, the image is then extracted with its
features.

For the calculation of the number of apples, we used
labbelmg software to label the data set in Subset 1 according to
the given labels, and some apples that were not clear due to the
image were labeled and counted manually to get the number
of apples. And keeping the number of apples in each image
in the labeled dataset, the distribution histogram of all apples
was plotted using matlab.

The labeling information is organized into an Excle table to
summarize, and then matlab plots the number of apples in each
image in Subset 1. The results are shown in Fig.13:

4.2 Estimated Apple Location

The minimum bounding box of the apple is plotted by
labbelmg to get the coordinates of the center position of the
labeled apple and the length and width size of the labeled
bounding box to determine the geometric position of the ap-
ple, and the obtained positional data information of the apple
is normalized so that the geometric coordinates of the apple
can be determined quickly in the next problem of establishing
the coordinates to plot the positional information of the apple,
and after obtaining the geometric coordinates of the apple, its
two-dimensional scatterplot is plotted in matlab to plot its 2D

Figure 13: Histogram of Apple Distribution

scatter plot. Geometric coordinates of apples Some of the ge-
ometric coordinates of apples detected by the YOLOv5 model
are shown in Table 4:

Table 4: Geometric coordinates of some apples

Image number Barycentric coordinate Bounding box length Bounding box width

(0.890741,0.381081) 0.085185 0.059459
(0.875926,0.462162) 0.100000 0.059459
(0.337037,0.681081) 0.074074 0.064865

40 (0.246296,0.616216) 0.085185 0.064865
(0.509259,0.591892) 0.070370 0.059459
(0.748148,0.275676) 0.066667 0.054054
(0.753704,0.143243) 0.048148 0.059459
(0.175926,0.391892) 0.070370 0.048649

The obtained data of bounding box dimensions and center of
mass position are normalized and a scatter plot is drawn with
the lower left corner as the coordinate origin. The 2D scatter
plot of the apple geometric coordinates is shown in Fig.14:

Figure 14: YOLOv5 Object Detection Model Structure
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4.3 Estimated quality of apples

The relative area is used to estimate the mass of each apple,
in which, for the two-dimensional area of apples, we use the
area of the edge frame after the edge detection marking, and
the information of the edge frame length and width data ob-
tained to estimate the two-dimensional area of each apple, and
the apple mass is estimated according to the average density
of apples and the estimation formula. At the same time, taking
into account the estimation error impact of the difference be-
tween the edge frame of the calculated area being rectangular
and the oblate shape of the apple, we provide a certain confi-
dence interval and error range for the estimation results, and
produce a histogram of the mass distribution.

According to the mass formula, theoretically, the larger the
area, the greater the mass of the apple. Therefore, here we use
the ratio of area to mass to solve for the area of the relative
image, i.e. the relative area of the apple, to estimate the mass
of the apple.

The following figure shows the histogram of apple mass dis-
tribution.

Figure 15: Histogram of apple ripeness distribution

As can be seen from the Fig.15, the apple quality is mainly
concentrated in the [0, 2000] interval, and a small portion is
distributed in the [60,000, 80,000] interval. The quality and
size of the apple images in Subset 1 are basically the same.

4.4 Estimating apple ripeness

Before judging the estimated maturity of apples, we first deter-
mine the expression of apple maturity, according to the litera-
ture and common sense in daily life, we know that the color,
size and texture can show the maturity state of apples, for ex-
ample, lime green apples are immature and red apples are usu-
ally in a ripe state, by using these factors to determine the ma-
turity of apples and coding the different maturity levels, and
deepening the prominence of the image features to classify the
ripeness of apples, again, we use YOLOv5 detection model for
classification.

The maturity of apples is related to many factors and be-
longs to the multi-classification problem, which is usually cat-
egorized into different maturity levels, divided into four levels,
and coded in the data annotation. The coding is defined as fol-
lows:

Table 5: Apple Data

Coding Apple color Tag number Grade of maturity

1 All-red 15 mature
2 All green 17 Immature
3 Half red and half green 16 Semi-mature
4 (flower)bud 19 Extremely immature

Based on this criterion, the classification results are shown
in Fig.16:

Figure 16: Histogram of apple ripeness distribution

As can be seen from the graph, the largest percentage of
fully red apples, over 2,500, indicates a majority of fully ripe
apples; followed by semi-ripe apples with the fewest flower
bones.

4.5 Apple Recognition Based on YOLOv5

Models

We divide the classified labeled Subset 2 data as the training
set and use Subset 3 as the test set to train the YOLOv5 de-
tection model to achieve apple detection in Subset 3 data. The
obtained results are shown below in Fig.17:

From the figure, it can be seen that [0,4140] has the highest
number of ID number apples, close to 1400, and [8280-10350]
has the lowest number of ID numbers, only about 800, with
precision and recall rates of 99.08% and 99.3%.

5 Conclusions

(i) In feature extraction, the image quality is improved by
preprocessing steps such as image denoising, enhance-
ment and color space conversion, which makes the sub-
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Figure 17: Histogram of apple ripeness distribution

sequent feature extraction and target detection more ac-
curate and reliable.

(ii) Based on the detection model of YOLOv5, enhanced
with an attention mechanism module, successfully ex-
tracts and recognizes features from robot apple picking
images in complex scenes. This enhancement improves
the model’s feature expression ability, extraction capabil-
ity of apple image features, and detection speed, enabling
accurate detection of apple locations, numbers, maturity,
and size.

(iii) The experimental results show that our proposed method
has good performance and accuracy in apple picking
tasks, which provides strong support for the development
of robotic automated picking systems. Future research di-
rections can further optimize the algorithm and improve
the accuracy of detection and recognition to meet the
needs of more efficient in real production.
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Abstract

Video Anomaly Detection (VAD), a critical task in in-
telligent surveillance systems, plays a vital role in pub-
lic safety, traffic management, and emergency response.
However, detecting small-scale and transient anomalies
in complex scenes remains a significant challenge due
to the scarcity of anomaly samples and the difficulty in
capturing fine-grained features. To address these issues,
this paper proposes a novel dynamic feature enhancement
framework built upon the Masked Autoencoder (MAE)
architecture. At the core of the proposed framework
is the Multi-Scale Discrepancy Saliency Fusion (MDSF)
module, which explicitly models and dynamically ampli-
fies channel-wise feature discrepancies between teacher
and student networks, thereby enhancing the saliency of
anomalous regions. Furthermore, MDSF integrates multi-
scale semantic features through a saliency-guided fusion
strategy, enabling the model to effectively capture anoma-
lies across varying spatial and temporal resolutions. The
proposed method is trained in an end-to-end manner with-
out requiring pre-trained weights and is evaluated on stan-
dard benchmark datasets, including UCSD Ped2, Avenue,
and ShanghaiTech. Experimental results demonstrate that
the proposed MDSF module significantly improves detec-
tion accuracy while maintaining low computational com-
plexity, highlighting its practical value and strong general-
ization capabilities for real-world video anomaly detection
tasks.

Index Terms— Video Anomaly Detection, Masked Autoen-
coder, Feature Enhancement, Multi-Scale Fusion, Distillation,
Attention.

1 Introduction
With the rapid advancement of deep learning techniques [1,
2, 32, 14, 26, 10, 11], video anomaly detection (VAD) has
emerged as a critical component in intelligent surveillance sys-
tems, playing a pivotal role in ensuring public safety, man-
aging traffic flow, and enabling efficient emergency response.
These systems are increasingly deployed in complex and dy-
namic environments, such as urban traffic networks, public
venues, and critical infrastructure, where the timely identifi-
cation of abnormal events is essential. Despite the remarkable
progress achieved in VAD, existing methods often struggle to

accurately capture the subtle, fine-grained features of anoma-
lies, especially those occurring at small scales or within highly
cluttered and dynamic backgrounds. This limitation is further
exacerbated by the scarcity and diversity of anomalous sam-
ples in real-world data, which hampers model generalization
and limits their robustness in practical scenarios [20, 9, 25].

In recent years, self-supervised learning frameworks based
on the Masked Auto-Encoder (MAE) architecture have
demonstrated considerable promise for VAD tasks [21, 18].
MAE models are typically trained by reconstructing masked
regions of normal video samples, enabling the network to learn
the spatiotemporal patterns of normal events without requiring
explicit anomaly annotations. At the testing stage, anoma-
lies—due to their deviation from the learned normal fea-
ture distribution—tend to induce higher reconstruction errors,
thereby facilitating indirect anomaly detection. This paradigm,
often referred to as ”reconstruction error-based anomaly detec-
tion”, has achieved widespread adoption; however, it still faces
several fundamental limitations. First, real-world anomaly
events often involve challenges such as illumination variations,
motion blur, and occlusions, which can corrupt the normal fea-
ture learning process, leading to unstable reconstruction er-
rors. Second, global reconstruction objectives are suscepti-
ble to background noise and dynamic scene variations, reduc-
ing the saliency of localized anomaly signals. Third, conven-
tional MAE-based approaches fail to fully exploit the rich fea-
ture discrepancy information between teacher and student net-
works, resulting in limited sensitivity to subtle anomalies and
suboptimal generalization in complex scenes.

To overcome these challenges, this paper proposes a
novel module named Multi-Scale Discrepancy Saliency Fu-
sion (MDSF), built upon the MAE architecture. The core
innovation of MDSF lies in explicitly modeling and dynam-
ically amplifying the channel-wise feature discrepancy be-
tween the teacher and student networks, allowing the model to
highlight abnormal regions where reconstruction errors mani-
fest. Furthermore, MDSF integrates multi-scale semantic fea-
tures through a saliency-guided fusion strategy, enabling the
model to capture fine-grained anomalies across different spa-
tial and temporal resolutions. This design not only enhances
the model’s sensitivity to small-scale and transient anomalies
but also mitigates the interference caused by background clut-
ter. The proposed method is evaluated on benchmark datasets
such as UCSD Ped2, Avenue, and ShanghaiTech, where it
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demonstrates significant improvements in detection accuracy
while maintaining low computational complexity, highlighting
its potential for practical deployment in real-world intelligent
surveillance systems.

The main contributions of this paper are as follows:

• We propose a novel Multi-Scale Discrepancy Saliency
Fusion (MDSF) module based on the Masked Auto-
Encoder (MAE) framework, which explicitly models and
dynamically amplifies the channel-wise feature discrep-
ancy between the teacher and student networks. This de-
sign significantly enhances the saliency of anomalous re-
gions and improves the model’s sensitivity to fine-grained
anomalies.

• A multi-scale saliency-guided fusion strategy is intro-
duced within MDSF, enabling the integration of hier-
archical semantic features from shallow to deep layers.
This approach facilitates the detection of small-scale,
spatially localized anomalies and improves the model’s
robustness against background noise and dynamic scene
variations.

• Extensive experiments on benchmark datasets (UCSD
Ped2 [12], Avenue [15], and ShanghaiTech [16]) demon-
strate that the proposed MDSF module achieves superior
detection accuracy compared to existing methods, while
maintaining low computational complexity. This con-
firms the effectiveness and practical potential of our ap-
proach for real-world video anomaly detection tasks.

2 Related Works

2.1 Video Anomaly Detection
Deep learning has significantly advanced video anomaly de-
tection (VAD), enabling end-to-end spatiotemporal modeling
from raw video data. Existing methods can be categorized into
supervised, weakly-supervised, and unsupervised paradigms.

Supervised methods formulate VAD as a classification task
using precisely annotated datasets [7, 4]. While achieving high
accuracy, they are heavily dependent on costly frame-level an-
notations and lack generalization to unseen anomalies [22, 6].

Weakly-supervised methods use video-level labels and
multi-instance learning (MIL) frameworks to reduce annota-
tion costs [27, 29]. However, they struggle to capture fine-
grained spatiotemporal features, limiting their sensitivity in
complex scenes.

Unsupervised methods, which train solely on normal
data without requiring anomaly annotations, have gained in-
creasing attention due to their scalability and adaptability.
Reconstruction-based models [5, 24]learn normal patterns and
detect anomalies by identifying reconstruction errors, while
prediction-based method [28] rely on temporal consistency.
Hybrid models [17] combine both strategies for improved ro-
bustness. Recent works have explored discrepancy modeling
between teacher-student networks [23], highlighting its poten-
tial for anomaly detection.

Despite these advances, unsupervised methods face chal-
lenges, including background noise interference and limited
sensitivity to small-scale anomalies. Nonetheless, compared
to supervised or weakly-supervised approaches, unsupervised
learning is better suited for real-world VAD scenarios, where
anomalies are rare, diverse, and costly to annotate.

Building on this, we propose a novel Multi-Scale Discrep-
ancy Saliency Fusion (MDSF) module within the MAE frame-
work, which explicitly models feature discrepancies and in-
tegrates multi-scale semantic information, thereby enhancing
fine-grained anomaly detection in complex video scenes.

2.2 Attention Mechanisms in Computer Vision
The attention mechanism has become an essential component
in modern computer vision systems, enabling models to dy-
namically focus on salient regions within input data. By adap-
tively reweighting spatial and channel-wise features, attention
modules enhance the representational capacity of neural net-
works, improving performance across various tasks such as
image classification, object detection, and semantic segmenta-
tion. One of the seminal works in this area is the Squeeze-and-
Excitation (SE) block proposed by Hu et al. [8], which intro-
duced channel attention by modeling inter-channel dependen-
cies and recalibrating feature responses, leading to significant
improvements in classification tasks. Building upon this, the
Non-Local Neural Network by Wang et al. [30] pioneered the
modeling of long-range dependencies through self-attention
mechanisms, enabling networks to capture global contextual
information across distant spatial locations. Furthermore, the
Convolutional Block Attention Module (CBAM) proposed by
Woo et al. [31] extended attention modeling to both channel
and spatial dimensions, demonstrating superior performance
in a wide range of vision tasks.

These advances have been widely adopted in diverse appli-
cation scenarios [13, 3]. These works underscore the versatil-
ity and efficacy of attention mechanisms in computer vision,
inspiring further exploration in designing robust, lightweight,
and scalable attention modules for complex visual tasks.
Building upon these insights, our work leverages the attention
paradigm within the Multi-Scale Discrepancy Saliency Fusion
(MDSF) module to enhance fine-grained anomaly detection
in video surveillance. Specifically, we model the channel-
wise feature discrepancies between the teacher and student
networks as attention signals and dynamically amplify these
differences across multiple spatial scales. This design al-
lows the model to selectively highlight subtle, spatially local-
ized anomalies while suppressing background noise, address-
ing key limitations in existing unsupervised anomaly detection
frameworks.

3 Methodology

3.1 Overall Architecture
In this section, we introduce the proposed Multi-Scale Dis-
crepancy Saliency Fusion (MDSF) module integrated within
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the Masked Autoencoder (MAE) framework, designed specif-
ically to address critical limitations of existing unsupervised
video anomaly detection methods. The proposed framework
consists of three main components: (1) a Teacher-Student net-
work for feature extraction and reconstruction, (2) the MDSF
module for dynamic discrepancy amplification and multi-scale
fusion, and (3) an anomaly scoring mechanism.

The central motivation behind MDSF is to explicitly mea-
sure and dynamically enhance the channel-wise discrepancy
between the teacher and student network features, thereby
highlighting regions exhibiting high reconstruction errors in-
dicative of anomalies. Additionally, MDSF incorporates
multi-scale semantic feature fusion guided by saliency maps,
enabling the detection of subtle anomalies while effectively
suppressing background noise.

3.2 Teacher-Student Network Feature Encod-
ing and Reconstruction

The Teacher-Student structure in our model leverages the re-
construction capabilities of a robust teacher network to guide
a relatively lightweight student network. Specifically, given an
input video frame It, both networks produce encoded feature
representations through their respective encoder operations,
which are defined as follows:

F teach
t = Encteacher(It), (1)

F stud
t = Encstudent(It). (2)

These features are then decoded separately by their corre-
sponding decoders, aiming to reconstruct the original input
frame:

Îteacht = Decteacher(F
teach
t ), (3)

Îstudt = Decstudent(F
stud
t ). (4)

Ideally, the student network closely reconstructs the input
under normal conditions but deviates significantly from the
teacher network reconstruction when anomalies occur, thus
creating feature discrepancies that our module aims to amplify.
This discrepancy implicitly contains crucial anomaly cues that
traditional reconstruction-based methods might overlook.

3.3 Dynamic Amplification of Channel-wise
Feature Discrepancy

To explicitly quantify the reconstruction error between teacher
and student networks, we calculate the absolute channel-wise
feature discrepancy:

Fdiff =
∣∣F teach

t → F stud
t

∣∣ , (5)

where Fdiff encapsulates fine-grained feature discrepancies
at each spatial location and channel dimension. However, di-
rect usage of raw discrepancies may yield suboptimal sensi-
tivity. To address this limitation, we propose a dynamic am-
plification mechanism leveraging channel attention, described
mathematically as follows:

Wattention = ω (MLP(GAP(Fdiff ))) , (6)

where GAP(·) denotes Global Average Pooling across spa-
tial dimensions, MLP(·) is a multilayer perceptron capturing
nonlinear dependencies among channels, and ω(·) represents
the sigmoid activation function. Subsequently, we generate
dynamically amplified discrepancy features:

Famplified = Fdiff ↑Wattention, (7)

where ↑ denotes channel-wise multiplication. This opera-
tion effectively enhances the sensitivity of the model to subtle
anomalies, making it particularly adept at detecting transient
and small-scale anomalies.

3.4 Saliency-Guided Multi-Scale Semantic Fea-
ture Fusion

Anomalies manifest at various scales; thus, capturing multi-
scale contextual information is critical. Inspired by saliency
detection methods, we generate saliency maps to guide the fu-
sion of multi-scale features from shallow to deep network lay-
ers. Specifically, given multi-scale amplified discrepancy fea-
tures {F (1)

amplified, F
(2)
amplified, . . . , F

(S)
amplified}, we first com-

pute saliency maps S(s) through spatial attention:

S(s) = ω(Conv(F (s)
amplified)), s = 1, 2, ..., S, (8)

where Conv(·) represents a 1↓ 1 convolution operation fol-
lowed by sigmoid activation. Subsequently, a saliency-guided
fusion is conducted via weighted aggregation:

Ffusion =
S∑

s=1

S(s) ↑ F (s)
amplified. (9)

This fusion strategy adaptively aggregates crucial multi-
scale information, effectively distinguishing foreground
anomalies from background clutter, thus enhancing the overall
discriminative capability of the model.

3.5 Anomaly Scoring and Detection
To obtain the final anomaly score, we employ an L2-norm
measure on the fused discrepancy features:

Scoreanomaly(It) = ↔Ffusion↔2. (10)

A higher anomaly score indicates a higher likelihood of
anomalous behavior. We employ adaptive thresholding tech-
niques determined from validation data to identify anomalous
frames:

Label(It) =

{
Anomaly, Scoreanomaly(It) > ε,

Normal, otherwise,
(11)

where ε is determined empirically to balance detection ac-
curacy and false alarm rates, providing flexibility across vari-
ous practical applications.
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3.6 Complexity Analysis and Advantages
Our MDSF module introduces only marginal computational
overhead while significantly improving detection perfor-
mance. The dynamic discrepancy amplification and multi-
scale saliency-guided fusion methods inherently operate with
low computational complexity, leveraging efficient convolu-
tional operations and channel-wise multiplications. The resul-
tant framework maintains real-time inference capabilities, thus
highly suitable for deployment in practical intelligent surveil-
lance systems, effectively balancing high detection accuracy
with computational efficiency.

4 Experiments

4.1 Datasets
To evaluate the effectiveness of the proposed Multi-Scale Dis-
crepancy Saliency Fusion (MDSF) module comprehensively,
we select three widely-used benchmark datasets in the video
anomaly detection community: UCSD Ped2, CUHK Avenue,
and ShanghaiTech. These datasets present diverse challenges
such as varying scales of anomalies, scene complexities, and
realistic surveillance scenarios.

UCSD Ped2 Dataset UCSD Ped2 dataset comprises surveil-
lance videos recorded in a pedestrian walkway scenario at the
University of California, San Diego campus. It contains 16
training video sequences and 12 testing video sequences, to-
taling approximately 2550 and 2010 frames, respectively, each
captured at a resolution of 360 ↓ 240 pixels. Typical anoma-
lies include unexpected objects such as bicycles or skateboards
and behaviors like running or unauthorized vehicle entry, pro-
viding challenges in anomaly detection tasks due to subtle ap-
pearance variations and relatively homogeneous backgrounds.

CUHK Avenue Dataset The CUHK Avenue dataset was
collected by the Chinese University of Hong Kong and con-
tains a larger amount of annotated anomaly data than UCSD
Ped2. It consists of 16 training videos and 21 testing videos,
totaling approximately 15,328 frames and 15,324 frames re-
spectively, each with a spatial resolution of 640 ↓ 360 pix-
els. Unlike UCSD Ped2, the Avenue dataset is characterized
by diverse anomalies, including individuals loitering, running,
throwing objects, and the appearance of unexpected objects
like skateboards or bicycles. Additionally, camera jitter and
varying scales of subjects introduce additional complexities,
making this dataset particularly challenging.

ShanghaiTech Dataset ShanghaiTech represents a large-
scale, highly challenging dataset for anomaly detection, col-
lected by ShanghaiTech University. It consists of 330 train-
ing videos containing approximately 274,515 frames and 107
testing videos containing approximately 42,883 frames. The
dataset is recorded in multiple surveillance scenarios across
various university campus locations, each with unique viewing

angles and lighting conditions. Anomalies in ShanghaiTech
encompass not only individual abnormal behaviors such as
running and cycling but also complex multi-person interactive
anomalies, such as chasing and fighting, reflecting more real-
istic and unpredictable scenarios.

4.2 Experimental Details
Implementation Details All experiments were conducted
using PyTorch on NVIDIA A100 GPUs with CUDA accelera-
tion. Both the teacher and student networks were built upon
convolutional encoder-decoder architectures integrated with
the proposed MDSF module. Input video frames were uni-
formly resized to a fixed spatial resolution of 256↓ 256 pixels
to ensure consistency across different datasets. Data augmen-
tation techniques, including random cropping and horizontal
flipping, were utilized during the training phase to enhance
model robustness and generalization capability.

Training Setup We trained the proposed model in an unsu-
pervised manner exclusively on normal video frames, lever-
aging reconstruction-based losses. Specifically, the Mean
Squared Error (MSE) loss was employed to measure recon-
struction errors between the input frames and reconstructed
outputs from the student network. We used the Adam op-
timizer with an initial learning rate of 1 ↓ 10→4, which
was reduced by a factor of 0.1 when validation performance
plateaued. Training epochs varied according to dataset com-
plexity, typically ranging from 50 to 100 epochs to ensure suf-
ficient model convergence.

Evaluation Setup

4.3 Comparison with State-of-the-Art Methods
To comprehensively evaluate the effectiveness and efficiency
of the proposed Multi-Scale Discrepancy Saliency Fusion
(MDSF) module, we conduct detailed comparisons with two
state-of-the-art methods: FastAno [19] and MemAE [5]. Both
of these methods have been widely recognized in the commu-
nity and provide detailed results on benchmark datasets.

Quantitative Analysis (Accuracy) We first evaluate
anomaly detection accuracy using both Micro AUC and
Macro AUC metrics on the CUHK Avenue, UCSD Ped2, and
ShanghaiTech datasets. Table 1 summarizes the quantitative
performance comparisons. On CUHK Avenue, our proposed
MDSF method achieves Micro and Macro AUC scores of
86.4% and 85.2%, respectively, which notably surpass the
performances of FastAno (85.3% Micro, 84.9% Macro) and
MemAE (81.2% Micro, 82.8% Macro). Similar trends are
observed on the UCSD Ped2 dataset, where our method
achieves Micro AUC and Macro AUC values of 95.0% and
98.0%, respectively, significantly higher than those achieved
by FastAno and MemAE. Additionally, on the ShanghaiTech
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Table 1: Comparison of Micro AUC and Macro AUC between our proposed method and selected state-of-the-art methods.

Method CUHK Avenue UCSD Ped2 ShanghaiTech
Micro Macro Micro Macro Micro Macro

FastAno [19] 85.3 84.9 96.3 94.1 72.2 79.7
MemAE [5] 81.2 82.8 94.1 97.0 71.2 78.9
MDSF (Ours) 86.4 85.2 95.0 98.0 72.1 81.2

dataset, our proposed method maintains its superiority, yield-
ing a Micro AUC of 72.1% and Macro AUC of 81.2%, clearly
surpassing the comparative methods.

Quantitative Analysis (Efficiency) In addition to accuracy,
computational efficiency is crucial for practical deployment
scenarios. Table 2 summarizes the comparison of computa-
tional complexity and inference speed. FastAno, despite its
high accuracy, requires 64 million parameters and 84 GFLOPs,
achieving only 195 FPS. MemAE, although lighter with 6 mil-
lion parameters and 55.2 GFLOPs, achieves an even lower
inference speed of 41 FPS. Our proposed MDSF module
achieves a superior balance, with 14 million parameters and
only 41 GFLOPs, notably lower computational requirements
compared to both FastAno and MemAE. Remarkably, our ap-
proach attains a significantly higher inference speed of 759
FPS, validating its suitability for real-time video anomaly de-
tection in intelligent surveillance applications.

Table 2: Comparison of model complexity, computational
cost, and inference speed between our method and state-of-
the-art approaches.

Method Params (M) GFLOPs FPS

FastAno [19] 64 84 195
MemAE [5] 6 55.2 35
MDSF (Ours) 14 41 759

Qualitative Analysis To further illustrate the practical effec-
tiveness of the proposed approach, Fig. 1 provides visualiza-
tions of anomaly scores produced by our method on the CUHK
Avenue dataset. Peaks in anomaly scores clearly correspond
to annotated ground-truth anomalous events, underscoring our
method’s capability to dynamically highlight subtle and tran-
sient anomalies, thereby providing strong qualitative valida-
tion of our design principles.

Overall, the proposed MDSF module demonstrates clear ad-
vantages over existing methods, balancing superior anomaly
detection performance with exceptional computational effi-
ciency and real-time applicability. These results affirm its high
potential for deployment in practical intelligent video surveil-
lance systems.

Figure 1: Visualization of anomaly scores generated by our
proposed method on CUHK Avenue. Red regions denote
ground-truth anomaly intervals.

5 Ablation Studies

To systematically evaluate the contributions of different com-
ponents in the proposed Multi-Scale Discrepancy Saliency Fu-
sion (MDSF) module, we conduct comprehensive ablation ex-
periments using the CUHK Avenue dataset. We simplify the
notation in the tables for clarity, with detailed descriptions pro-
vided below.

5.1 Dynamic Discrepancy Amplification

Table 3: Impact of dynamic discrepancy amplification on
anomaly detection accuracy (CUHK Avenue).

Method Variant Micro/Macro AUC (%)

Baseline 83.8 / 83.5
Ours 86.4 / 85.2

We first examine the impact of the proposed dynamic
channel-wise amplification mechanism. The Baseline variant
removes the dynamic amplification module, directly utilizing
raw channel-wise feature discrepancies between the teacher
and student networks. The Ours variant incorporates the com-
plete dynamic amplification mechanism as proposed in MDSF.

Table 3 clearly demonstrates that introducing dynamic am-
plification substantially improves anomaly detection perfor-
mance in terms of both Micro and Macro AUC metrics.
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5.2 Saliency-Guided Multi-Scale Fusion
Next, we validate the efficacy of the proposed saliency-guided
multi-scale semantic fusion. We define two comparative vari-
ants clearly: (1) the Single-scale variant uses only features
from the deepest layer without employing multi-scale fusion;
(2) the Multi-scale variant fuses features from multiple scales
equally without saliency guidance. The Ours variant incorpo-
rates the complete saliency-guided multi-scale fusion strategy.

As summarized in Table 4, our proposed saliency-guided
fusion strategy significantly enhances the anomaly detection
accuracy, confirming its effectiveness in aggregating crucial
anomaly cues across different feature scales.

Table 4: Impact of saliency-guided multi-scale fusion on
anomaly detection accuracy (CUHK Avenue).

Method Variant Micro/Macro AUC (%)

Single-scale 84.7 / 84.1
Multi-scale 85.5 / 84.8
Ours 86.4 / 85.2

5.3 Computational Efficiency Analysis
Finally, we analyze the computational efficiency. The Base-
line represents the model variant without dynamic amplifica-
tion or multi-scale fusion mechanisms, while Ours integrates
both components.

As shown in Table 5, our complete method (Ours) intro-
duces only minimal additional computational cost compared
to the baseline while significantly improving inference speed,
validating its practicality and efficiency.

Table 5: Computational complexity analysis.

Method Variant Params (M) GFLOPs FPS

Baseline 8 30 980
Ours 14 41 759

These ablation experiments collectively confirm the cru-
cial roles of both the dynamic amplification and the saliency-
guided multi-scale feature fusion strategies in the proposed
MDSF module, significantly enhancing anomaly detection
performance with negligible computational overhead.

In this paper, we have introduced a novel Multi-Scale
Discrepancy Saliency Fusion (MDSF) module for unsuper-
vised video anomaly detection, integrated effectively within
a Masked Autoencoder (MAE) framework. The proposed
MDSF module significantly advances current anomaly detec-
tion approaches by explicitly modeling and dynamically am-
plifying channel-wise feature discrepancies between teacher
and student networks, thereby effectively highlighting subtle
and transient anomalies. Additionally, our saliency-guided
multi-scale fusion strategy successfully aggregates semantic
features across multiple scales, reducing interference from

background clutter and further enhancing anomaly discrimi-
nation.

Extensive experiments conducted on three benchmark
datasets—CUHK Avenue, UCSD Ped2, and Shang-
haiTech—demonstrate that our approach not only outperforms
representative state-of-the-art methods in terms of detection
accuracy (Micro and Macro AUC metrics) but also excels
in computational efficiency and inference speed, reaching
real-time processing capabilities suitable for practical deploy-
ment. Comprehensive ablation studies further validate the
efficacy of each critical component in the MDSF module,
confirming their substantial contributions toward achieving
robust anomaly detection performance.

Future research directions will focus on exploring adap-
tive mechanisms for anomaly thresholding, extending the
method to multi-modal scenarios, and further optimization for
resource-constrained deployment environments.
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Abstract

Multimodal recommendation has emerged as a promis-
ing solution to alleviate the cold-start and sparsity prob-
lems in collaborative filtering by incorporating rich con-
tent information, such as product images and textual de-
scriptions. However, effectively integrating heteroge-
neous modalities into a unified recommendation frame-
work remains a challenge. Existing approaches often rely
on fixed fusion strategies or complex architectures , which
may fail to adapt to modality quality variance or introduce
unnecessary computational overhead.

In this work, we propose RLMultimodalRec, a
lightweight and modular recommendation framework that
combines graph-based user modeling with adaptive mul-
timodal item encoding. The model employs a gated fu-
sion module to dynamically balance the contribution of
visual and textual modalities, enabling fine-grained and
content-aware item representations. Meanwhile, a two-
layer LightGCN encoder captures high-order collabora-
tive signals by propagating embeddings over the user-item
interaction graph without relying on nonlinear transforma-
tions.

We evaluate our model on a real-world dataset from the
Amazon product domain. Experimental results demon-
strate that RLMultimodalRec consistently outperforms
several competitive baselines, including collaborative fil-
tering, visual-aware, and multimodal GNN-based meth-
ods. The proposed approach achieves significant improve-
ments in top-K recommendation metrics while maintain-
ing scalability and interpretability, making it suitable for
practical deployment.

Index Terms— Multimodal Recommendation, Graph Neural
Networks, Gated Fusion, Collaborative Filtering, LightGCN,
Cold-start Problem, Content-aware Recommendation

1 Introduction

Recommender systems have become an indispensable com-
ponent of modern e-commerce, content platforms, and on-

line services[28]. By analyzing user behavior and preferences,
these systems aim to suggest relevant items from massive cat-
alogs, enhancing user satisfaction and driving engagement.
Collaborative filtering (CF) methods, which learn from histor-
ical user-item interaction data, have demonstrated remarkable
effectiveness in this domain. Among them, graph-based mod-
els such as LightGCN have gained particular attention for their
ability to model high-order connectivity in user-item bipartite
graphs without introducing excessive complexity.

Despite their success, collaborative filtering models inher-
ently suffer from the cold-start and sparsity problems. When
user interaction data is limited or unavailable—such as for new
users or newly added items—CF models struggle to gener-
ate accurate recommendations. To mitigate this issue, recent
work has explored the incorporation of side information such
as product images, titles, and descriptions. Multimodal recom-
mendation, which leverages both collaborative and content-
based signals, has emerged as a promising solution, particu-
larly in domains like fashion and retail, where visual and tex-
tual characteristics play a critical role in user decision-making.
Recent studies have also highlighted its applicability in high-
stakes fields such as real-time credit risk detection, underscor-
ing its value in national financial infrastructure and fraud pre-
vention systems.

However, integrating multimodal content into recommen-
dation models is non-trivial. First, different modalities often
provide overlapping or inconsistent signals. For instance, an
image may capture an item’s color and shape, while a tex-
tual description may emphasize style, material, or brand. A
naı̈ve fusion strategy—such as simple concatenation or aver-
aging—assumes equal importance across modalities, which
may lead to suboptimal performance when one modality is
more informative than the other or when modality quality
varies significantly across items. Second, many existing mul-
timodal models rely on complex architectures with modality-
specific graph encoders or attention mechanisms, which intro-
duce additional parameters, training instability, and computa-
tional overhead. This raises the need for a multimodal frame-
work that is both effective and lightweight.
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In this work, we propose RLMultimodalRec, a unified and
efficient framework for multimodal recommendation that ad-
dresses the above challenges through modular and adaptive de-
sign. Our model builds upon two key components: (1) a gated
fusion module that dynamically combines visual and textual
features at the embedding level, and (2) a lightweight graph
convolutional encoder (LightGCN) that captures collaborative
patterns over the user-item interaction graph. Unlike prior
work that entangles content and graph propagation, our ap-
proach maintains a clear separation of roles—content encod-
ing is performed at the item level, while graph-based aggrega-
tion is applied only to ID embeddings—resulting in improved
stability, interpretability, and generalization.

The gated fusion module plays a central role in our archi-
tecture. Instead of treating all modalities equally, it learns a
gating vector that adaptively weights the contribution of each
modality on a per-item, per-dimension basis. This mechanism
enables the model to focus on the most informative modality
for each item and to remain robust in cases where one modal-
ity may be missing or noisy. For collaborative learning, we
adopt a two-layer LightGCN to propagate signals across the
user-item graph, allowing user embeddings to be enriched by
multi-hop neighborhood information without introducing non-
linear transformations or feature mixing.

We evaluate our model on the Clothing, Shoes, and Jewelry
subset of the Amazon Review dataset, which contains implicit
user-item interactions along with pre-extracted image and text
features for each item. Experimental results demonstrate that
RLMultimodalRec consistently outperforms strong baselines
from collaborative filtering (MF-BPR, LightGCN), content-
aware (VBPR), and multimodal categories (MMGCN, Dual-
GNN). Our model achieves significant improvements on Re-
call and NDCG, particularly at higher cutoff thresholds such
as top-20.

In summary, this work makes the following contributions:
(1) We present a modular recommendation framework that
unifies collaborative filtering and multimodal content mod-
eling in an efficient and interpretable manner; (2) We intro-
duce a gated fusion strategy that adaptively balances visual and
textual signals, enabling content-aware personalization at the
embedding level; and (3) We conduct extensive experiments
demonstrating that our approach achieves state-of-the-art per-
formance while remaining lightweight and scalable.

2 Related Work

2.1 Collaborative Filtering and Matrix Factor-

ization

Collaborative filtering (CF) lies at the core of modern rec-
ommender systems. Matrix Factorization (MF)–based ap-
proaches, such as Singular Value Decomposition (SVD) and
Bayesian Personalized Ranking (BPR) [15], project users and
items into a shared low-dimensional latent space and model in-
teractions through inner products. While effective, MF meth-
ods are limited by data sparsity and cold-start issues, as they

rely solely on user-item interactions.
Several extensions have introduced side information such as

temporal, social, or contextual data. However, traditional MF
lacks the capacity to model high-order dependencies across the
interaction graph.

2.2 Graph Neural Networks for Recommenda-

tion

Graph Neural Networks (GNNs) have become a popular
paradigm for capturing higher-order collaborative signals in
user-item interaction graphs. Methods such as PinSage and
GCN-based models [24] aggregate multi-hop neighbors to en-
hance representation learning. LightGCN [6] simplifies this
process by removing nonlinearities and feature transforma-
tions, retaining only essential neighborhood aggregation, and
achieving strong performance with low complexity.

Despite their effectiveness, GNN-based recommenders of-
ten lack the capacity to incorporate rich item content, limiting
their performance in cold-start and content-sparse scenarios.

2.3 Multimodal Recommendation Systems

To address limitations from interaction sparsity, multimodal
recommendation models incorporate auxiliary modalities, in-
cluding item descriptions, images, and even audio. VBPR [5]
introduces visual features into BPR using a shallow linear pro-
jection. Other models, such as TextBPR and DeepCoNN [9],
leverage textual reviews for enhanced user/item representa-
tion.

Recent models like MMGCN [21] employ gating and at-
tention mechanisms to adaptively fuse modalities based on
relevance and quality. These approaches improve robustness
under modality noise or missing features. However, multi-
modal fusion remains a key challenge due to modality mis-
alignment and representational imbalance. Recent advances in
attention-based architectures, such as the SETransformer [11],
have shown the potential of combining sequential encoding
with hybrid attention mechanisms for robust feature learning,
which inspires our design. Similarly, GAN-based architec-
tures have been applied to model latent sentiment dynamics in
finance [3], demonstrating the value of generative representa-
tions in domains with noisy or ambiguous multimodal inputs.
Cross-modal fusion mechanisms have been widely applied in
computer vision tasks [?].

Additionally, knowledge graph embedding and few-shot re-
lational modeling have been explored in financial and digital
asset contexts [13], which provide promising avenues for in-
corporating structured knowledge and improving generaliza-
tion under data sparsity.

2.4 Deep Representation Learning and Seman-

tic Matching

Deep neural architectures have shown promise in encoding
content-rich user/item features[2]. Models project both user
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and item features into a shared semantic space, where recom-
mendations are made based on vector similarity. These mod-
els are effective for content-based retrieval but may lack struc-
tural bias needed for sparse or graph-structured data. Con-
trastive learning has also shown effectiveness in financial do-
mains such as cryptocurrency portfolio optimization [23], sug-
gesting its generalizability for learning robust embeddings in
complex environments. In parallel, hybrid generative and con-
trastive frameworks have been effectively used in industrial vi-
sual tasks [20, 1], demonstrating strong representation capabil-
ities under sparse or noisy conditions—challenges also shared
by multimodal recommendation systems.

3 Methodology

We propose RLMultimodalRec, a reinforcement-inspired mul-
timodal recommendation framework that jointly leverages
user-item interaction signals and rich item content from mul-
tiple modalities (image and text). Our model addresses three
key challenges in multimodal recommendation:

Modality Bias and Redundancy: Different modalities (e.g.,
image vs. text) may provide redundant or conflicting informa-
tion. We introduce a gated fusion mechanism that dynamically
balances modality importance at the embedding level, allow-
ing the model to adaptively weigh visual versus textual content
for each item and dimension.

Sparse User-Item Interactions: To propagate collaborative
signals beyond direct interactions, we employ a Light Graph
Convolutional Network (LightGCN), which captures high-
order neighborhood structures over a user-item bipartite graph
without over-parameterization [6].

Unified End-to-End Training: We integrate the ID embed-
dings, modality projection, gated fusion, and GCN-enhanced
user embeddings into a unified architecture trained with binary
cross-entropy loss under online negative sampling, enabling
effective joint learning across all components.

Our design is simple, yet effective: we show that by combin-
ing modality-aware item encoding with graph-based user rep-
resentation learning, the model achieves superior top-K rec-
ommendation accuracy on real-world multimodal datasets.

3.1 Dataset and Preprocessing

We conduct our experiments on the Clothing, Shoes and Jew-
elry subset of the Amazon Review Dataset, following the data
preprocessing protocol introduced in the MENTOR frame-
work [31]. This dataset comprises implicit user-item interac-
tion logs along with rich multimodal content for each item,
including both product images and textual descriptions. The
multimodal nature of this dataset makes it particularly suitable
for evaluating the effectiveness of multimodal recommenda-
tion models.

To ensure data quality and sufficient interaction density, we
apply the widely used 5-core filtering strategy. This proce-
dure retains only users who have interacted with at least five
items and items that have received interactions from at least

five unique users. Such filtering reduces sparsity and improves
the robustness of learned collaborative representations. The
resulting dataset contains a sufficiently large number of users
and items to support the training of deep neural models.

Each item in the dataset is associated with two types of
precomputed content features. Visual features are extracted
from the product image using a pretrained convolutional neu-
ral network, resulting in a 4096-dimensional image embed-
ding. These embeddings capture global visual semantics such
as shape, color, and style. Textual features are derived from
product titles and descriptions using a Sentence Transformer
model, yielding a 384-dimensional semantic vector that en-
codes the linguistic content in a dense representation. These
features are fixed throughout training and are stored in .npy
format for efficient loading.

The original interaction file contains raw user and item iden-
tifiers as strings, with no accompanying timestamps. We begin
by removing duplicate user-item interaction pairs to eliminate
redundancy. Since the dataset does not include temporal infor-
mation, we synthetically generate pseudo-timestamps by as-
signing random integers to each interaction. This enables us
to sort interactions chronologically per user, allowing for tem-
porally consistent train-test splitting. Subsequently, we apply
label encoding to transform user and item identifiers into con-
secutive integer indices. This facilitates efficient embedding
table indexing within PyTorch models.

To simulate a realistic evaluation scenario, we adopt a leave-
one-out strategy for train-test splitting. For each user, the most
recent interaction—determined by the synthetic timestamp—
is held out as the test instance, while the remaining interactions
form the training set. This setting reflects the real-world task
of predicting a user’s next interaction given their history. For-
mally, for each user u, we denote the most recent item as itest

u ,
and construct the training and test sets as Dtrain = Iu \ {itest

u }
and Dtest = {(u, itest

u )}, respectively.
As the dataset contains only implicit positive feedback, we

perform negative sampling during training to construct infor-
mative contrastive pairs. For each observed interaction (u, i),
we randomly sample one or more items j that the user has
not interacted with, treating them as negative examples. This
negative sampling is performed dynamically at each training
epoch to ensure diversity and reduce overfitting. The final
dataset thus consists of a mixture of positive and sampled neg-
ative instances, suitable for training under a binary classifica-
tion or pairwise ranking objective.

3.2 Model architecture

In this section, we present our proposed model, RLMulti-
modalRec, a unified multimodal recommendation framework
that integrates user-item interaction signals with visual and
textual content representations of items. The model is com-
posed of five primary components: (1) learnable ID embed-
dings for users and items, (2) modality-specific feature projec-
tion networks, (3) a gated fusion module for combining visual
and textual embeddings, (4) a lightweight graph convolutional
network (LightGCN) for collaborative representation learning,
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and (5) a policy network that predicts item preferences based
on the final user representations.

3.3 User and Item Embeddings

We initialize learnable embedding matrices for users and
items, denoted as Eu → R|U|→d and Ei → R|I|→d, respectively,
where d is the embedding dimension. These ID embeddings
capture collaborative signals independent of content modali-
ties and are updated throughout training via backpropagation.

3.4 Modality-Specific Projection Networks

Each item is associated with an image feature vector ximg
i →

Rdimg and a textual feature vector xtxt
i → Rdtxt , which are

extracted offline using pretrained models. To project these
raw modality features into a shared latent space, we apply two
modality-specific linear transformations followed by a ReLU
activation:

vimg
i = ReLU(Wimgx

img
i + bimg) (1)

vtxt
i = ReLU(Wtxtx

txt
i + btxt) (2)

Here, Wimg → Rd→dimg and Wtxt → Rd→dtxt are learnable
projection matrices, and vimg

i ,vtxt
i → Rd are the intermediate

modality embeddings.

3.5 Gated Multimodal Fusion

In multimodal recommendation, it is common to combine
multiple content features such as images and text. How-
ever, a naı̈ve fusion—such as direct concatenation or averag-
ing—assumes that all modalities are equally informative and
reliable. This assumption often fails in practice: product im-
ages may be ambiguous (e.g., multiple items in one picture),
while text descriptions may be noisy or incomplete.

To address this, we introduce a learned gating mechanism
that allows the model to adaptively control how much to rely
on each modality for every item. Concretely, for an item i
with visual embedding vimg

i and textual embedding vtxt
i , we

compute a dimension-wise gate:

gi = ω(Wg[v
img
i ;vtxt

i ] + bg) (3)

The final fused item embedding zi is obtained as a weighted
combination:

zi = gi ↑ vimg
i + (1↓ gi)↑ vtxt

i (4)

where ↑ denotes element-wise multiplication. This for-
mulation enables the model to focus on the most informative
modality for each item dimension-wise, and to remain robust
in cases where one modality may be noisy or missing.

3.6 Graph Convolutional Collaborative Encod-

ing

To capture collaborative signals beyond first-order interac-
tions, we adopt a two-layer LightGCN on the user-item bi-
partite graph. This allows user embeddings to incorporate
neighborhood context while maintaining parameter efficiency,
which is crucial for scalability. Let G = (U ↔ I, E) be the
user-item bipartite graph, where edges denote observed inter-
actions. We concatenate the user and item ID embeddings into
a single node embedding matrix and propagate representations
through the graph via neighbor aggregation:

e(l+1)
v =

∑

u↑N (v)

1√
|N (v)||N (u)|

e(l)u (5)

Here, e(l)v represents the embedding of node v at layer l, and
N (v) denotes the 1-hop neighbors of v. We stack two such
layers and use the final output e(2)v as the GCN-enhanced rep-
resentation for each user and item. The fusion embeddings zi
are not propagated through GCN and are instead used during
scoring.

3.7 Policy Network for Recommendation

To predict user preferences over items, we design a lightweight
policy network that takes as input the final user embedding
from GCN and outputs a score vector over candidate items.
The policy network is implemented as a two-layer feedforward
neural network:

ŷu = W2 · ReLU(W1eu + b1) + b2 (6)

where eu is the GCN-updated user embedding. During
training, the model learns to assign higher scores to positive
items than to sampled negatives. During inference, we com-
pute the matching score between user and fused item embed-
dings using either the policy net output or a dot product:

sui = e↓u zi (7)

This allows the model to leverage collaborative structure
and multimodal semantics jointly for final recommendation.

4 Training Objective and Implementa-

tion Details

4.1 Training Objective

The proposed model is trained under the implicit feedback set-
ting, where only positive user-item interactions are observed.
To optimize the ranking performance, we formulate the train-
ing objective as a binary classification problem and employ
the Binary Cross-Entropy (BCE) loss. For each positive user-
item pair (u, i) sampled from the training set, we dynamically
sample negative items j that the user has not interacted with.
Each training instance is thus composed of both a positive pair
(u, i, y = 1) and one or more negative pairs (u, j, y = 0).
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Given the user representation eu learned from LightGCN
and the fused multimodal item representation zi, the predicted
interaction score is computed as:

sui = e↓u zi (8)

The prediction [19] is passed through a sigmoid activation
to produce a probability score ŷui = ω(sui). The BCE loss is
then defined as:

L = ↓y log(ŷui)↓ (1↓ y) log(1↓ ŷui) (9)

To encourage stable and generalizable training, we perform
online negative sampling at each epoch. For every observed
interaction, one or more negative items are sampled uniformly
at random from the set of items not previously interacted with
by the user. This strategy ensures the model learns to distin-
guish relevant items from irrelevant ones and reduces overfit-
ting to static sampling distributions. This optimization process
aligns with recent efforts in convex reformulation of sequential
decision models, such as Z-transform-based decomposition of
MDPs [14], which emphasize stability and convergence effi-
ciency in large-scale learning problems.

4.2 Implementation Details

The model is implemented in PyTorch and trained using the
Adam optimizer with a learning rate of 1↗ 10↔3. The embed-
ding dimension d is set to 64, and the model is trained for a
maximum of 150 epochs with a batch size of 256. We apply
early stopping with a patience of 5 epochs based on Recall@10
performance on a held-out validation set.

We use two LightGCN layers for graph propagation and one
fully connected layer with ReLU activation for each modal-
ity projection (image and text). The gate mechanism is im-
plemented as a linear transformation over the concatenated
modality features followed by a sigmoid activation. The pol-
icy network consists of a 2-layer MLP with a hidden size of
128 and ReLU nonlinearity.

To construct the graph for GCN propagation, we treat the
user-item interaction matrix as a bipartite undirected graph.
For each observed interaction, two directed edges are added:
one from the user node to the item node, and one in the reverse
direction. The resulting edge list is transformed into a sparse
edge index tensor for efficient message passing.

All multimodal features are pre-extracted and stored in
NumPy ‘.npy‘ files. Image features are 4096-dimensional vec-
tors derived from pretrained CNNs, while text features are
384-dimensional embeddings obtained from Sentence Trans-
formers. These features are normalized and fixed throughout
training.

Model checkpoints are saved based on the best validation
recall, and the best model is used for final evaluation. All ex-
periments are conducted on A100, Google Colab.

Table 1: Hyperparameters and training configuration for the
multimodal recommendation model.

Parameter Value

Embedding dimension 64
Number of GCN layers 2
GCN normalization scheme Symmetric degree (LightGCN)
Fusion mechanism Gated fusion (ReLU + sigmoid gate)
Batch size 256
Learning rate 0.001
Optimizer Adam
Loss function Binary cross-entropy
Negative sampling ratio 1:1
Top-K for evaluation 20
Training epochs 100
Early stopping patience 5 epochs
Train/test split Leave-one-out (per user)
Graph construction Bipartite user-item graph with bidirectional edges

5 Experiment

5.1 Experimental Setup

We conduct experiments on the Amazon Clothing, Shoes and
Jewelry dataset, which provides both implicit feedback and
multimodal item content (images and text). Following the
standard 5-core filtering and leave-one-out evaluation strategy
detailed in Section ??, we use the most recent interaction of
each user for testing and the rest for training. Negative sam-
pling is performed dynamically at training time, while during
evaluation, 100 negative items are sampled per user to assess
top-K retrieval performance.

All models are implemented in PyTorch and trained using
the Adam optimizer with a learning rate of 0.001, a batch size
of 256, and early stopping based on Recall@10. Hyperparam-
eters such as embedding dimension and GCN layers are kept
consistent across models for fair comparison. Each experiment
is repeated with three random seeds, and the reported results
are averaged.

5.2 Baselines

We compare our proposed model against several strong base-
lines from collaborative filtering, content-aware, and multi-
modal recommendation families:

MF-BPR [?]: Matrix factorization optimized with Bayesian
personalized ranking loss.

LightGCN [6]: A lightweight GCN-based CF model that
removes feature transformations and nonlinearities.

LayerGCN [33]: A variant of GCN that explicitly models
multi-layer interaction propagation.

VBPR [5]: A visual-aware extension of BPR that incorpo-
rates precomputed image features.

MMGCN [21]: A multimodal GCN model that jointly prop-
agates image and text information.
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DualGNN [18]: A dual-channel graph model that processes
content and interaction signals separately.

For all baselines, we use the official code or faithful reim-
plementations with standardized preprocessing and evaluation
for consistency.

5.3 Evaluation Metrics

We adopt standard top-K ranking metrics widely used in rec-
ommendation tasks:

Recall@K (R@K): Measures the proportion of ground-truth
items found among the top-K recommended items.

NDCG@K (N@K): Normalized Discounted Cumulative
Gain, which accounts for the rank position of relevant items.

We report both R@10/20 and N@10/20 to evaluate the qual-
ity and consistency of recommendations at different cutoff
points.

5.4 Results and Analysis

Model Source R@10 R@20 N@10 N@20

MF-BPR 0.0357 0.0575 0.0192 0.0249
LightGCN 0.0479 0.0754 0.0257 0.0328
LayerGCN 0.0529 0.0820 0.0281 0.0355
VBPR 0.0423 0.0663 0.0223 0.0284
MMGCN 0.0380 0.0615 0.0200 0.0284
DualGNN 0.0378 0.0715 0.0240 0.0309
Our Model 0.0505 0.0996 0.0285 0.0341

Table 2: Comparison of models on recommendation metrics
(Recall and NDCG at 10 and 20)

Table 2 presents the performance of our proposed model
and baselines across all evaluation metrics. We follow the ex-
perimental setup and evaluation protocol introduced in MEN-
TOR [31], using the same Amazon Clothing dataset and leave-
one-out strategy. Several key observations can be drawn:

Our model consistently outperforms all baselines on Re-
call@20 and NDCG@10, achieving 0.0996 and 0.0285, re-
spectively. These improvements demonstrate the benefit of
jointly modeling user-item interactions and multimodal con-
tent.

Compared to LightGCN, which uses only collaborative sig-
nals, our method shows a substantial gain (+32

Compared to VBPR and MMGCN, which also incorpo-
rate image/text features, our model achieves superior accuracy,
showing the effectiveness of our gated fusion mechanism in
adaptively weighting modalities.

Notably, while LayerGCN and DualGNN utilize deeper or
dual-path graph propagation, they underperform our model,
indicating that modality-aware item encoding is more crucial
than simply deepening GCN depth.

These results validate our model design choices and con-
firm that combining content-sensitive item embeddings with
graph-enhanced user representations leads to more accurate
and personalized recommendations. Similar observations have

been reported in other domains such as fraud detection [16],
where classical and deep models exhibit distinct strengths in
handling highly imbalanced data and optimizing recall-driven
objectives [16].

6 Discussion

The experimental results demonstrate that the proposed RL-
MultimodalRec model achieves consistent performance gains
across multiple recommendation metrics compared to both
collaborative filtering and multimodal baselines. Several ob-
servations can be made to better understand the model’s be-
havior and its underlying design choices.

One of the most notable contributors to performance is
the gated fusion module. This component allows the model
to dynamically integrate visual and textual content for each
item, rather than relying on simple concatenation or averag-
ing. In practice, different modalities often provide comple-
mentary but uneven signals. For instance, some items may
have clear visual characteristics but vague descriptions, while
others may contain informative text but low-quality images.
Similar challenges arise in fraud detection and deepfake iden-
tification [12], where GAN-based models have been employed
to detect malicious content across modalities, highlighting the
importance of robust cross-modal learning under adversarial
settings. The gating mechanism helps mitigate such hetero-
geneity by allowing the model to selectively emphasize the
more informative modality in each case. Unlike global fu-
sion strategies that apply the same weight across all items,
the gating vector is computed per item and per embedding
dimension, enabling fine-grained control over the fusion pro-
cess. This helps the model learn robust item representa-
tions that are sensitive to modality quality and content type.
Such robustness is especially valuable in domains like trans-
action monitoring and credit risk modeling, where the abil-
ity to integrate noisy or incomplete multimodal data in real
time is essential. Our method thus has strong potential for
deployment in financial compliance systems and fraud detec-
tion pipelines—areas aligned with national objectives for eco-
nomic resilience and digital infrastructure modernization. In
parallel, recent research has emphasized the importance of
model interpretability in credit risk scenarios [25], where en-
semble methods paired with SHAP explanations enable trans-
parent and regulatory-compliant decision-making—further re-
inforcing the practical relevance of multimodal AI frame-
works in high-stakes financial applications. Cross-domain re-
trieval methods such as MaRI [17] emphasize the importance
of aligning heterogeneous information sources, which aligns
with our design for modality-aware and content-robust fusion
in sparse recommendation settings. Beyond recommendation
scenarios, reinforcement learning has also shown promise in
operational scheduling and autonomous control. For example,
recent work has applied RL to optimize task scheduling for
warehouse robots to improve logistical efficiency [22], under-
scoring its potential for real-time decision-making in indus-
trial environments. These advances resonate with our design
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of lightweight, adaptive recommendation models that aim to
maximize decision efficiency under dynamic constraints.

In addition to content-aware item modeling, the use of
graph-based interaction modeling through LightGCN further
improves performance [10]. The graph encoder aggregates
multi-hop neighborhood signals and captures collaborative re-
lationships beyond direct interactions. Compared to traditional
matrix factorization, this graph-based structure enables more
expressive user representations. At the same time, the sepa-
ration of roles—using graph propagation for user embeddings
and gated fusion for item embeddings—prevents interference
between collaborative and content signals. This design leads
to better modularity and interpretability, as well as more stable
training dynamics.

Interestingly, the proposed model outperforms several
deeper or more complex graph-based models, including Lay-
erGCN and DualGNN. While these methods introduce deeper
propagation layers or dual-path encoders, they may suffer
from over-smoothing or gradient vanishing, particularly in
sparse interaction graphs. In contrast, our model maintains
a lightweight two-layer structure that balances information
propagation with computational efficiency [32, 27]. The ab-
sence of nonlinear transformations in LightGCN also reduces
the risk of overfitting and helps preserve the original seman-
tics of embeddings. The experimental results demonstrate
that the proposed RLMultimodalRec model achieves consis-
tent performance gains across multiple recommendation met-
rics compared to both collaborative filtering and multimodal
baselines. Several observations can be made to better under-
stand the model’s behavior and its underlying design choices.

One of the most notable contributors to performance is the
gated fusion module. This component allows the model to dy-
namically integrate visual and textual content for each item,
rather than relying on simple concatenation or averaging. In
practice, different modalities often provide complementary but
uneven signals. For instance, some items may have clear vi-
sual characteristics but vague descriptions, while others may
contain informative text but low-quality images. Similar chal-
lenges arise in fraud detection and deepfake identification [12],
where GAN-based models have been employed to detect ma-
licious content across modalities, highlighting the importance
of robust cross-modal learning under adversarial settings. The
gating mechanism helps mitigate such heterogeneity by allow-
ing the model to selectively emphasize the more informative
modality in each case. Unlike global fusion strategies that ap-
ply the same weight across all items, the gating vector is com-
puted per item and per embedding dimension, enabling fine-
grained control over the fusion process. This helps the model
learn robust item representations that are sensitive to modality
quality and content type.

Such robustness is especially valuable in domains like trans-
action monitoring and credit risk modeling, where the abil-
ity to integrate noisy or incomplete multimodal data in real
time is essential. Our method thus has strong potential for
deployment in financial compliance systems and fraud detec-
tion pipelines—areas aligned with national objectives for eco-
nomic resilience and digital infrastructure modernization. In

parallel, recent research has emphasized the importance of
model interpretability in credit risk scenarios [25], where en-
semble methods paired with SHAP explanations enable trans-
parent and regulatory-compliant decision-making—further re-
inforcing the practical relevance of multimodal AI frameworks
in high-stakes financial applications. Cross-domain retrieval
methods such as MaRI [17] emphasize the importance of
aligning heterogeneous information sources, which aligns with
our design for modality-aware and content-robust fusion in
sparse recommendation settings.

Beyond recommendation scenarios, reinforcement learning
has also shown promise in operational scheduling and au-
tonomous control. For example, recent work has applied RL to
optimize task scheduling for warehouse robots to improve lo-
gistical efficiency [22], underscoring its potential for real-time
decision-making in industrial environments.

From an HCI perspective, the design of lightweight, in-
terpretable, and adaptive recommendation models also con-
tributes to enhancing user-facing interfaces. Incorporating
multimodal understanding into recommender systems can im-
prove digital experience quality, particularly in e-commerce
settings where users interact with content-rich interfaces. This
aligns with recent studies on interactive logistics UX de-
sign [8] and the success of consumer platforms driven by high-
quality interface design [7], which emphasize the value of ef-
fective human-computer interaction in shaping trust, usability,
and user satisfaction in digital systems.

Despite these advantages, the model has certain limitations.
First, the visual and textual features are fixed and pre-extracted
using pretrained encoders. While this design simplifies train-
ing and reduces computational cost, it limits the ability of the
model to refine content features in response to user prefer-
ences [29]. Future work could explore end-to-end learning
that jointly updates content encoders with collaborative objec-
tives. Second, the model is trained using binary labels derived
from implicit feedback, which may not capture the full spec-
trum of user preferences. Incorporating richer feedback sig-
nals, such as user reviews or interaction dwell time, could lead
to more accurate recommendations. Third, the current infer-
ence approach evaluates a relatively small candidate set per
user. In real-world scenarios with large item catalogs, scal-
able retrieval mechanisms such as approximate nearest neigh-
bor search would be required to ensure efficiency. Similar
lightweight learning frameworks have also shown practical
value in warehouse robotics and task scheduling [26].

Overall, the results confirm that jointly modeling collabora-
tive interactions and multimodal content, when done in a mod-
ular and adaptive manner, leads to robust and effective recom-
mendation performance. The design principles of RLMulti-
modalRec provide a flexible foundation for future research in
multimodal graph-based recommendation systems.

7 Conclusion

In this work, we propose RLMultimodalRec, a unified frame-
work for multimodal recommendation that integrates graph-
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based collaborative filtering with content-aware item encod-
ing. The model incorporates a gated fusion mechanism to
adaptively combine visual and textual information, and em-
ploys a lightweight graph convolutional network to propagate
collaborative signals across the user-item interaction graph
[4]. Through extensive experiments on a real-world multi-
modal dataset, we demonstrate that the proposed method out-
performs both traditional collaborative filtering models and ex-
isting multimodal baselines on standard top-K recommenda-
tion metrics.

Our analysis highlights the effectiveness of modeling each
modality independently before fusion, as well as the benefit of
separating content encoding from collaborative message pass-
ing. The results also show that even simple GCN-based struc-
tures, when combined with modality-aware item representa-
tions, can yield strong performance without excessive archi-
tectural complexity.

Beyond recommendation, the core principles of our
approach—content-sensitive fusion and graph-based propaga-
tion—can be extended to domains such as intelligent risk as-
sessment and personalized regulation in finance, supporting
scalable decision-making under uncertainty. Looking ahead,
we see several promising directions for future research. One
avenue is to enable end-to-end learning of content features by
fine-tuning vision and language encoders alongside the rec-
ommendation objective. Another direction is to incorporate
richer forms of user feedback, such as textual reviews or im-
plicit behavioral cues. Finally, extending the framework to
support efficient large-scale retrieval and personalized rank-
ing under real-time constraints would enhance its applicabil-
ity to production settings. Moreover, emerging work on con-
textual bandits under unbounded context spaces [30] offers a
promising direction for real-time personalization under com-
plex user-item distributions, which could be integrated with
our framework for adaptive exploration.
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Abstract

Human Activity Recognition (HAR) using wearable
sensor data has become a central task in mobile comput-
ing, healthcare, and human-computer interaction. Despite
the success of traditional deep learning models such as
CNNs and RNNs, they often struggle to capture long-
range temporal dependencies and contextual relevance
across multiple sensor channels. To address these limi-
tations, we propose SETransformer, a hybrid deep neu-
ral architecture that combines Transformer-based tempo-
ral modeling with channel-wise squeeze-and-excitation
(SE) attention and a learnable temporal attention pooling
mechanism. The model takes raw triaxial accelerometer
data as input and leverages global self-attention to cap-
ture activity-specific motion dynamics over extended time
windows, while adaptively emphasizing informative sen-
sor channels and critical time steps.

We evaluate SETransformer on the WISDM dataset and
demonstrate that it significantly outperforms conventional
models including LSTM, GRU, BiLSTM, and CNN base-
lines. The proposed model achieves a validation accuracy
of 84.68% and a macro F1-score of 84.64%, surpassing
all baseline architectures by a notable margin. Our re-
sults show that SETransformer is a competitive and in-
terpretable solution for real-world HAR tasks, with strong
potential for deployment in mobile and ubiquitous sensing
applications.

Index Terms— Human Activity Recognition (HAR), Wear-
able Sensors, Transformer Networks, Time-Series Classifica-
tion, Squeeze-and-Excitation (SE), Temporal Attention.

1 Introduction
Human Activity Recognition (HAR) from wearable sensor
data has emerged as a critical research area in sports[10,
1], healthcare[7], elderly care[23] and intelligent human-
computer interaction[19, 17, 16]. By automatically identifying
physical activities such as walking, sitting, running, or ascend-
ing stairs using motion signals from devices like smartphones

and smartwatches, HAR systems enable a wide range of real-
world applications including fitness monitoring[3, 4], elderly
fall detection[2, 9] and context-aware user interfaces[20].

Traditionally, HAR systems have relied on hand-crafted sta-
tistical or frequency-domain features, followed by classical
machine learning algorithms such as support vector machines
or decision trees. However, these approaches often require
domain expertise for feature engineering and lack scalability
across datasets or devices[13]. In recent years, deep learning
models, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have become the domi-
nant paradigm, offering automated feature extraction and tem-
poral modeling capabilities[21, 33]. CNNs excel at captur-
ing short-range spatial patterns from raw signals, while RNNs
such as LSTM and GRU are widely used for modeling sequen-
tial dependencies.

Despite their success, these models suffer from several lim-
itations. CNNs are inherently limited by fixed receptive fields
and are not well suited for modeling long-term dependen-
cies across extended time windows. RNNs, although capa-
ble of processing sequences, are prone to vanishing gradients,
and their sequential nature restricts parallelization and efficient
long-range modeling. Moreover, both CNNs and RNNs typi-
cally use static pooling or flattening operations to summarize
temporal information, which can discard task-relevant time
steps. Additionally, existing models often treat all sensor chan-
nels equally, ignoring the fact that different channels (e.g., ver-
tical vs. lateral acceleration) may carry unequal relevance for
different activities.

To overcome these challenges, we propose SETransformer,
a novel deep learning architecture designed for multivari-
ate time-series classification in HAR. Our model leverages a
Transformer-based encoder to model global temporal depen-
dencies, a squeeze-and-excitation (SE) module to perform dy-
namic channel-wise attention, and a temporal attention pool-
ing mechanism that learns to aggregate the most informative
time steps. Together, these components allow the model to
capture both long-range and fine-grained patterns, while se-
lectively focusing on the most relevant temporal and spatial
features.
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We evaluate SETransformer on the WISDM dataset, a
benchmark for smartphone-based HAR[28]. Experimental re-
sults show that our method significantly outperforms baseline
models including LSTM, GRU, BiLSTM, and CNN, achieving
state-of-the-art performance in terms of accuracy and macro
F1-score. Our model also demonstrates stable convergence
and interpretable attention behavior. These findings suggest
that combining global self-attention with adaptive feature se-
lection mechanisms yields robust and scalable HAR solutions
suitable for real-world deployment.

In summary, our main contributions are as follows:

• We introduce SETransformer, a hybrid architecture that
integrates transformer-based temporal modeling with
channel-wise and temporal attention mechanisms tailored
for HAR.

• We propose a fully end-to-end training pipeline with
z-score normalization and attention-based pooling, en-
abling the model to focus on the most discriminative fea-
tures in both time and channel dimensions.

• We conduct extensive experiments and ablation studies
on the WISDM dataset, demonstrating superior perfor-
mance over established deep learning baselines.

2 Related Works

2.1 Human Activity Recognition with Tradi-
tional Methods

Human Activity Recognition (HAR) using wearable sensors
has been studied extensively over the past decade. Early
approaches typically relied on hand-crafted statistical or
frequency-domain features extracted from sliding windows
of sensor data. These features were then fed into classi-
cal machine learning models such as Support Vector Ma-
chines (SVMs), Decision Trees, and k-Nearest Neighbors (k-
NN) [5]. While these methods achieved acceptable perfor-
mance on small, clean datasets, they often failed to general-
ize well across users and devices, requiring significant domain
expertise for effective feature engineering. Recently, Zhang et
al. [32] demonstrated a related data-driven approach applied
to naturalistic human behavior analysis in bipolar disorder, in-
troducing interpretable action segmentation and dynamic be-
havioral metrics. Their work illustrated how advanced com-
putational approaches can surpass traditional psychiatric and
ethological measures, highlighting opportunities to similarly
enhance traditional HAR techniques through data-driven mod-
eling and interpretability.

2.2 Deep Learning for HAR
To overcome the limitations of feature engineering, deep
learning-based methods have been widely adopted in HAR
tasks. Convolutional Neural Networks (CNNs) have been em-
ployed to capture local spatial and temporal patterns in sensor

signals [26]. Recurrent Neural Networks (RNNs), especially
Long Short-Term Memory (LSTM) networks, have been used
to model sequential dependencies in time-series data [18]. Hy-
brid models combining CNNs and LSTMs [22] have shown
improved performance by leveraging both spatial and tempo-
ral structures.

Despite their success, CNNs are limited by local receptive
fields, and RNNs are difficult to parallelize due to their se-
quential nature. Moreover, both architectures often struggle to
capture long-range dependencies effectively.

2.3 Transformer Models in Time Series Analy-
sis

Inspired by their success in natural language processing,
Transformer-based models have recently been adapted for
time-series classification tasks, including HAR [14]. Trans-
formers employ self-attention mechanisms to model global de-
pendencies and allow for highly parallelizable training. How-
ever, applying vanilla Transformers to multivariate sensor data
may result in poor generalization due to the absence of induc-
tive biases inherent in sensor signals (e.g., temporal continuity,
sensor-specific structure).

Several works have explored modifications of Transformer
architectures to better suit time-series data. For example,
TimeSformer [6] and Perceiver [12] introduce attention over
spatial-temporal axes. Unified transformer-based architectures
have also demonstrated success in multimodal tasks such as
document understanding, where a single model handles de-
tection, recognition, and semantic interpretation in a unified
framework [8]. These advances reflect the broader applicabil-
ity of attention-based designs for structured, multi-component
data modeling. However, these models are computationally
expensive and often require large datasets for effective train-
ing. Transformers have also been applied to structured spa-
tiotemporal generation tasks, such as traffic scene modeling in
autonomous driving [31], further highlighting their versatility
in capturing long-range dependencies across diverse domains.
Similar advances have also been observed in the domain of
instructional video understanding, where temporal attention
mechanisms are used for aligning visual prompts and answer
segments [15].

2.4 Attention Mechanisms in HAR

Attention mechanisms have also been employed explicitly in
HAR models to improve interpretability and performance. For
instance, temporal attention modules have been used to dy-
namically weight the importance of time steps [24], while
channel attention mechanisms such as Squeeze-and-Excitation
(SE) networks [11] have been applied to recalibrate feature
maps based on sensor channel relevance. Beyond traditional
accelerometer-based HAR, recent work has demonstrated the
effectiveness of temporal modeling in physiological signal
recognition tasks such as fine-grained heartbeat waveform
monitoring using RFID and latent diffusion models [25]. This
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highlights the growing applicability of advanced attention-
based architectures across diverse sensor modalities.

2.5 Our Contribution
In this work, we build upon these recent advances by design-
ing a Transformer-based model tailored to HAR. We integrate
a Squeeze-and-Excitation module to model inter-channel rela-
tionships and a temporal attention mechanism to highlight in-
formative segments of the sequence. Our model, SETRANS-
FORMER, combines the benefits of global temporal model-
ing with domain-specific inductive biases, achieving improved
performance on standard HAR benchmarks.

3 Methodology

3.1 Dataset and Preprocessing
We evaluate our proposed model on the WISDM (WISDM
Smartphone and Smartwatch Activity and Biometrics) dataset,
a widely adopted benchmark for human activity recognition
using mobile sensor data. The dataset comprises triaxial ac-
celerometer recordings collected from 51 subjects, each of
whom was asked to perform 18 tasks for 3 minutes each. Dur-
ing data collection, each subject wore a smartwatch on their
dominant hand and carried a smartphone in their pocket. The
dataset includes a timestamp, a user identifier, a class label,
and acceleration and gyrocope values along the x, y, and z
axes. The sampling rate is approximately 20 Hz, and the data
is stored in semi-structured text files, with each line represent-
ing a single sensor reading.

To ensure a consistent and clean dataset for supervised
learning, we begin by filtering out malformed records. Specif-
ically, only lines that are properly terminated with a semicolon
and contain exactly 18 comma-separated fields are retained.
These fields are parsed into structured columns, including the
user ID, activity label, timestamp, and three-axis acceleration
measurements. We discard any incomplete or corrupted en-
tries and ensure that all numerical fields are correctly cast to
their appropriate data types. To standardize activity labels, we
remove any leading or trailing whitespace and encode them as
integers using the scikit-learn LabelEncoder.

In order to model temporal patterns effectively, we segment
the continuous data stream into fixed-length sliding windows.
Each window consists of 200 consecutive time steps, corre-
sponding to roughly 10 seconds of sensor data, and the win-
dows are generated with a stride of 100 to allow 50% over-
lap between adjacent segments. To maintain label consistency
within each sample, we retain only those windows in which all
200 time steps share the same activity label. This results in a
set of supervised input-output pairs, where each input sample
is a matrix of shape

X → R200→3

representing a window of triaxial acceleration values, and
each target is a single activity class label.

Prior to feeding the data into the neural network, we per-
form feature normalization to standardize the input distribu-
tion. Each axis (x, y, z) is normalized independently using
z-score normalization, computed over the entire training set.
Prior to model input, the data is standardized using z-score
normalization applied independently to each axis:

x↑ =
x↑ µ

ω

where µ and ω are computed globally over the entire train-
ing set. This ensures that all sensor channels contribute
equally during training and accelerates convergence by mit-
igating scale disparities. That is, for each axis, we subtract
the global mean and divide by the standard deviation, ensur-
ing that each channel has zero mean and unit variance. This
step improves numerical stability and accelerates convergence
during model training by eliminating scale disparities among
input features.

Finally, the fully preprocessed dataset is split into training
and validation sets using an 80/20 stratified split to preserve
class balance across partitions. The result is a structured, nor-
malized dataset suitable for temporal deep learning, with con-
sistent window lengths, standardized channel inputs, and clear
supervision targets. This preprocessing pipeline enables re-
producible experimentation and aligns with best practices in
wearable sensor-based activity recognition research.

We propose SETransformer, a hybrid deep neural architec-
ture that integrates transformer-based temporal encoding with
lightweight channel and temporal attention modules, specif-
ically designed for multivariate time-series classification in
human activity recognition (HAR). The model aims to ad-
dress key challenges in wearable-sensor HAR tasks, namely:
(1) modeling long-range temporal dependencies, (2) capturing
discriminative inter-channel dynamics, and (3) adaptively ag-
gregating sequential signals of varying importance. This sec-
tion presents a comprehensive description of each component,
including design rationale, architectural formulation, and com-
putational flow.

3.2 Problem Formulation
Given a windowed multivariate time series X → RT→C , where
T is the number of time steps and C is the number of input
channels (in our case, C = 3 for x, y, z acceleration), the task
is to predict a single activity label y → {1, . . . ,K}, with K
being the number of activity classes.

The data is structured as uniformly sampled and pre-
segmented windows of length T = 200, each labeled accord-
ing to the dominant activity within the window. Our model
learns a function f : RT→C ↓ RK , where the output is a
categorical distribution over classes.

3.3 Input Projection
The first stage of SETRANSFORMER performs a linear
transformation to embed raw sensor signals into a higher-
dimensional space suitable for subsequent attention mecha-
nisms:
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H0 = XWproj + bproj, Wproj → RC→d

where d is the model dimension (typically 128). The projec-
tion enables richer representation learning over raw accelera-
tion features, and aligns input shape with transformer require-
ments.

3.4 Temporal Encoding via Transformer Lay-
ers

We adopt a standard Transformer encoder to capture global
temporal interactions. Each encoder layer consists of multi-
head self-attention and a position-wise feed-forward network
(FFN), wrapped with residual connections and layer normal-
ization:

SelfAttn(Q,K,V) = softmax
(
QK

↓
↔
dk

)
V

Hω = LayerNorm (Hω↔1 + SelfAttn(Hω↔1))

Hω = LayerNorm (Hω + FFN(Hω))

We stack two such encoder layers. Unlike in NLP, we omit
learnable positional encodings, relying on the structure of sen-
sor data and sequential convolution of windows to retain im-
plicit temporal order.

3.5 Channel-Wise Attention: Squeeze-and-
Excitation Module

Human motions often exhibit dominant directional patterns
depending on the activity (e.g., walking involves rhythmic os-
cillations in the vertical axis). To exploit such patterns, we in-
troduce a Squeeze-and-Excitation (SE) module that performs
dynamic reweighting of channel responses.

First, we aggregate temporal information per channel via
global average pooling:

zc =
1

T

T∑

t=1

H2[t, c]

Then, we compute channel-wise gating coefficients:

s = ω (W2 · ReLU(W1 · z)) , s → Rd

where W1 → Rd→ d
r and W2 → R d

r→d, with reduction ratio
r = 16. The recalibrated features are obtained as:

HSE[t, c] = H2[t, c] · sc
This operation allows the model to selectively emphasize or

suppress sensor channels conditioned on the global temporal
context.

4.5 Temporal Aggregation via Attention Pooling
Traditional HAR models often rely on global average or

max pooling over time to summarize temporal features. How-
ever, such operations assume equal relevance of all time steps,

which is inappropriate for activities with transient or non-
stationary phases. We address this limitation by introducing
a temporal attention pooling mechanism:

Each time step t receives an attention score:

εt =
exp

(
v
↓ tanh(WaHSE[t])

)
∑T

k=1 exp (v
↓ tanh(WaHSE[k]))

where Wa → Rd→d→
and v → Rd→

. The final representation
is a context vector:

c =
T∑

t=1

εt ·HSE[t]

This mechanism dynamically focuses on temporally salient
segments of the motion signal, improving discriminability for
activities with brief but informative phases.

3.6 Classification Layer

The resulting context vector c → Rd is passed through a fully
connected classifier:

ŷ = softmax(Wcc+ bc), Wc → RK→d

producing a categorical distribution over the activity classes.
The model is trained end-to-end using cross-entropy loss.

4.7 Architectural Overview and Design Motivation
The SETRANSFORMER design embodies three core prin-

ciples:
1. Global temporal modeling through self-attention enables

flexible capture of short and long-range dependencies without
recurrence. 2. Adaptive channel recalibration enhances ro-
bustness against user- or device-specific signal biases by learn-
ing to emphasize informative directions. 3. Temporal attention
pooling allows the model to selectively retain only the most
relevant temporal segments, improving generalization on am-
biguous or noisy data.

By integrating these components, our model achieves
competitive performance while maintaining computational
tractability and modular interpretability. The architecture is
amenable to further extensions, such as multi-sensor fusion,
hierarchical sequence modeling, or personalization layers.

3.7 Experimental Setup
All experiments were conducted using the PyTorch deep learn-
ing framework in the Google Colab environment. Training and
evaluation were performed on a single NVIDIA A100 GPU.
Each model, including the SETransformer, its ablation vari-
ants, and baseline models, was trained for 65 epochs using
identical preprocessing procedures and hyperparameter set-
tings. We used the Adam optimizer with a fixed learning
rate of 0.001 and a batch size of 64. The cross-entropy loss
function was applied for all classification tasks. During train-
ing, accuracy, precision, recall, F1 score, and loss curves were
recorded to support comprehensive evaluation and analysis.
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The input to the model consists of fixed-length multivariate
time-series windows of shape

X → R200→3

, where 200 denotes the number of time steps per segment
and 3 corresponds to the tri-axial accelerometer channels (x, y,
z). Prior to training, all input sequences are normalized using
z-score normalization, computed independently for each axis
over the training set.

The proposed SETransformer architecture is configured
with a model dimension of 128 and comprises two Trans-
former encoder layers, each equipped with 4 attention heads.
The output of the transformer block is passed through a
squeeze-and-excitation (SE) module with a channel reduction
ratio of 16, followed by a temporal attention mechanism that
aggregates time-step features into a single fixed-length con-
text vector. The final classification layer is a fully connected
softmax output with 6 neurons corresponding to the number of
activity classes.

Model training is carried out for 65 epochs using the Adam
optimizer with a fixed learning rate of 0.001. A batch size of
64 is used throughout. Cross-entropy loss serves as the train-
ing objective. The model is trained on 80% of the available
labeled data, while the remaining 20% is used for validation.
Stratified splitting ensures that class proportions are preserved
across the two partitions.

Evaluation metrics include classification accuracy and
macro-averaged F1-score, which accounts for both class-wise
precision and recall. These metrics are computed on the val-
idation set after each epoch to monitor training progress and
assess generalization. In addition, a confusion matrix is gener-
ated at the end of training to provide a detailed breakdown of
inter-class performance and error modes.

The key parameters (Table 1) for the experiments are as fol-
lows:

Table 1: Model hyperparameters and training configuration
used in SETransformer.

Parameter Value
Input dimension (accelerometer channels) 3
Window size (time steps) 200
Transformer model dimension 128
Number of Transformer layers 2
Number of attention heads 4
Channel dimension for SE attention 128
SE reduction ratio 16
Temporal attention hidden dimension 64
Classification output dimension (num classes) 6
Batch size 64
Learning rate 0.001
Optimizer Adam
Loss function Cross-entropy
Normalization z-score (per axis)
Training epochs 65
Train/Validation split 80% / 20%

4 Results

4.1 Confusion Matrix
The confusion matrix for the test set was plotted to further
analyse the model’s performance across different action cate-
gories. Figure 5 illustrates the confusion matrix of the model
on the test set.

Figure 1: Confusion matrix of the SE-Transformer model on
the test set.

4.2 Training and testing loss curves

Figure 2: Enter Caption

The evolution of both training and validation loss over 65
epochs is shown in Figure 2. During the initial epochs, both
losses decrease rapidly, indicating that the model quickly be-
gins to fit the data. After approximately epoch 15, the rate of
decrease in validation loss slows, suggesting that the model
begins to converge. Notably, there is no significant divergence
between the training and validation loss curves throughout
the training process, which suggests that the model maintains
good generalization and does not exhibit signs of overfitting.

The training loss decreases from an initial value of approxi-
mately 2.09 to 0.32, while the validation loss drops from 1.94
to 0.48. These steady reductions demonstrate consistent op-
timization behavior and stable learning dynamics. Between
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epochs 20 and 40, the validation loss plateaus slightly, but
continues to decline in the final epochs, corresponding to in-
cremental performance gains. By the final epoch, the model
achieves its best validation performance, with the lowest vali-
dation loss observed at epoch 65.

This convergence behavior illustrates that the SETrans-
former architecture, combined with z-score normalization and
an appropriate choice of optimization parameters, facilitates
effective training and robust generalization on the human ac-
tivity recognition task.

4.3 Performance Comparison

Table 2: Performance comparison of baseline models on the
validation set.

Model Accuracy Precision Recall F1 Score
LSTM 0.5962 0.5920 0.5953 0.5912
BiLSTM 0.4945 0.4895 0.4927 0.4867
GRU 0.5489 0.5562 0.5474 0.5428
CNN 0.7111 0.7179 0.7113 0.7076

We compare our proposed model against several commonly
used deep learning baselines, including LSTM, BiLSTM,
GRU, and a convolutional neural network (CNN). The re-
sults are summarized in Table 2. Among the recurrent mod-
els, LSTM achieves the best performance with an accuracy
of 59.62% and a macro F1-score of 59.12%. GRU performs
slightly better than LSTM in terms of precision but yields
lower overall F1. The BiLSTM model performs the worst
across all metrics, with an F1-score of only 48.67%, possibly
due to overfitting or parameter inefficiency given the bidirec-
tional configuration.

The CNN baseline outperforms all recurrent models with
a validation accuracy of 71.11% and an F1-score of 70.76%.
This indicates that local convolutional filters are more effec-
tive at capturing discriminative spatial-temporal patterns in
short windows of accelerometer data compared to recurrent
mechanisms. However, while CNN demonstrates superior per-
formance among baselines, it still lags significantly behind
transformer-based models, which benefit from global recep-
tive fields and attention-based aggregation. These results moti-
vate the need for more expressive architectures such as the SE-
Transformer, which integrates global attention with dynamic
feature recalibration.

5 Discussion
The experimental results clearly demonstrate the superiority of
the proposed SETransformer model over traditional recurrent
and convolutional architectures in the context of human activ-
ity recognition from accelerometer signals. Several key factors
contribute to its improved performance.

First, the Transformer-based temporal encoder provides a
significant advantage in modeling long-range dependencies

compared to sequential RNN-based models such as LSTM
or GRU. Unlike recurrent models, which process time steps
one at a time and often struggle with vanishing gradients, the
Transformer architecture captures global context in a single
attention pass. Such capabilities are not limited to physical ac-
tivity recognition. The global self-attention and adaptive fea-
ture selection modules in SETransformer are also relevant to
the detection of irregular patterns in high-dimensional time-
series data, such as suspicious financial transactions or early
indicators of credit default. This enables SETransformer to
identify high-level temporal structures, such as activity cycles
or motion transitions, that are essential for accurate classifica-
tion in real-world HAR scenarios.

Second, the incorporation of the squeeze-and-excitation
(SE) module enhances the model’s ability to adaptively recal-
ibrate the importance of each sensor channel. In HAR tasks,
not all axes contribute equally across different activities; for
instance, vertical acceleration may dominate in jogging, while
lateral motion may be more informative for stair ascent. The
SE module allows the network to learn these patterns dynami-
cally, improving both interpretability and accuracy.

Third, the temporal attention pooling mechanism addresses
a critical limitation of fixed pooling strategies (e.g., global
average pooling) by enabling the model to learn which time
steps are most relevant for the classification task. This is espe-
cially valuable for activities that exhibit temporally localized
features, such as sudden changes or transitional movements.

Despite these advantages, the current model has several lim-
itations. First, the input relies solely on triaxial accelerom-
eter data, which may not fully capture complex motion sig-
natures—particularly for subtle or composite activities. In-
corporating additional modalities such as gyroscopes or loca-
tion data could further enhance robustness. Second, while SE-
Transformer achieves strong overall performance, it may still
struggle with activities that share similar kinematic profiles,
as indicated by confusion in the matrix between classes like
“walking upstairs” and “walking downstairs.” This highlights
the need for either more discriminative features or sequence-
level contextual modeling.

Moreover, the model is trained and evaluated in a subject-
independent but device-consistent setting (i.e., phone only).
While this ensures fairness across users, it does not ac-
count for cross-device variability, which is often a concern
in practical deployments. Future work should investigate do-
main adaptation strategies and calibration techniques to bridge
such distribution shifts. Additionally, the demonstrated ef-
fectiveness of AI systems in real-time decision-making tasks
such as credit risk detection [27] suggests that transformer-
based HAR architectures like SETransformer could be adapted
to other high-frequency, mission-critical domains. Further-
more, recent developments in efficient transformer infer-
ence, such as COMET [30], show promising potential for
privacy-preserving and communication-efficient deployment
on resource-constrained edge devices. Complementary to ar-
chitectural approximations, parameter-efficient transfer learn-
ing strategies, as exemplified by the V-PETL benchmark [29],
offer an additional path toward lightweight adaptation, mak-
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ing SETransformer even more suitable for real-time mobile
applications. Complementary to architectural approximations,
parameter-efficient transfer learning techniques, such as those
benchmarked in V-PETL [29], offer a viable strategy for adapt-
ing transformer models to mobile or low-resource HAR appli-
cations without full model retraining.

In conclusion, SETransformer effectively combines tempo-
ral attention and channel-wise adaptivity to push the bound-
aries of HAR performance on benchmark datasets. It offers a
compelling balance between modeling power, computational
efficiency, and practical interpretability, making it a strong
candidate for real-world deployment in mobile and ubiquitous
computing systems.

6 Conclusion

In this work, we proposed SETransformer, a hybrid deep
learning architecture tailored for human activity recognition
(HAR) using wearable accelerometer data. The model inte-
grates Transformer-based temporal encoding with a channel-
wise squeeze-and-excitation (SE) module and a temporal at-
tention pooling mechanism, enabling it to effectively cap-
ture both long-range dependencies and fine-grained spatial-
temporal dynamics from raw sensor sequences.

Through extensive experiments on the WISDM dataset, we
demonstrated that SETransformer significantly outperforms
conventional sequence models such as LSTM, GRU, and
CNN, achieving a validation accuracy of 84.68% and a macro-
averaged F1 score of 84.64%. The model shows stable conver-
gence, strong generalization, and interpretable attention mech-
anisms that focus on discriminative time segments. Ablation
results further validate the individual contributions of the SE
and temporal attention modules.

The effectiveness of SETransformer suggests its strong po-
tential for real-world mobile sensing and context-aware ap-
plications. In future work, we plan to extend the model to
incorporate multi-modal sensor inputs (e.g., gyroscope, mag-
netometer), investigate domain adaptation across users and
devices, and explore its deployment efficiency on resource-
constrained embedded systems.
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Abstract—Under the strategic background of digital 

transformation of global higher education and regional 
coordinated development, Guangdong-Hong Kong-Macau 
Greater Bay Area's higher education clusters are facing a 
critical transformation from "technological dispersion" to 
"intelligent symbiosis". This article focuses on the 
contradiction between institutional differences and 
technological innovation under the framework of "one country, 
two systems", analyzes the fragmentation problems such as 
heterogeneous standards and imbalanced scenarios in the 
current application of AI technology, and reveals the 
obstruction of the flow of technical elements caused by 
institutional barriers and conflicts of ideas. The research 
proposes a theoretical framework of "intelligent symbiosis" 
with AI technology as the core driving force, and achieves 
dynamic scheduling of cross-domain computing resources and 
compliant flow of privacy data by building a technical 
connection system of "computing power network + data middle 
platform"; Relying on ecological empowerment mechanisms 
such as interdisciplinary intelligent discovery and human-
machine collaborative talent portraits, activate the deep 
coupling of innovation potential energy and industrial demand; 
With the help of technical tools such as blockchain smart 
contracts and policy semantic conversion engines, we will 
promote resource allocation from "administrative leadership" to 
"algorithm collaboration", organizational governance from 
"bureaucratic fragmentation" to "network autonomy", and 
value creation from "individual competition" to "ecological 
win-win". The research further puts forward the 
implementation guarantee system from three aspects: technical 
standard coordination, compound talent cultivation, and 
technical ethics prevention and control, emphasizing that cross-
border governance can be solved through the rule construction 
of "sovereignty compatibility and dynamic evolution" and the 
co-evolution mechanism of "technology-system". difficult 
problem. This study provides a three-dimensional solution of 
"technological empowerment-institutional innovation-
ecological evolution" for the construction of a higher education 
cluster with international influence in Greater Bay Area, and 
has theoretical reference and practical reference value for the 

 

coordinated development of education in the global multi-
institutional environment. 
 
Index Terms—AI empowerment; Higher Education Cluster; 
Guangdong-Hong Kong-Macau Greater Bay Area 

 

I. INTRODUCTION 
Under the dual wave of digital transformation of global higher 
education and regional coordinated development, Guangdong-
Hong Kong-Macau Greater Bay Area, as a frontier area where 
institutional differences and technological innovation coexist 
under the framework of "one country, two systems", has 
become a key incision to solve the problem of regional 
coordinated development. At present, although higher 
education in the Bay Area has the advantages of strong 
disciplinary complementarity and close industrial linkage, the 
application of AI technology presents the fragmentation 
characteristics of "single-point experiment and system 
fragmentation", superimposed on cross-border data policy 
differences and technical concept conflicts under "one country, 
two systems" Deep-seated contradictions such as conflict have 
led to structural dilemmas such as inefficient resource 
allocation, hindered scientific research collaboration, and 
lagging governance mechanisms. 
In this context, how to use AI technology as a link to break 
through the dual constraints of institutional barriers and 
technological dispersion, and build a new paradigm of higher 
education collaboration with both efficiency and fairness has 
become the core proposition for Greater Bay Area to build an 
international scientific and technological innovation hub. This 
paper focuses on the evolutionary logic of "technology discrete-
intelligent symbiosis", deconstructs the AI-driven cluster 
collaboration mechanism from the three dimensions of 
technology connection, ecological empowerment, and co-
evolution, explores the paradigm transition path of resource 
allocation, organizational governance, and value creation, and 
proposes implementation guarantee systems such as technical 
standard collaboration, talent echelon construction, and risk 
prevention and control mechanisms, with a view to providing a 
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theoretical framework and practical guidance for higher 
education clusters in the Greater Bay Area from "shallow 
cooperation" to "deep symbiosis". 

II. DISCRETE DILEMMA: TECHNOLOGY APPLICATION STATUS 
AND BOTTLENECK OF GUANGDONG, HONG KONG AND MACAO 

HIGHER EDUCATION CLUSTERS 
(1) Fragmented characterization of technology applications 
At present, the application of AI technology in Guangdong-

Hong Kong-Macau Greater Bay Area's universities shows 
obvious characteristics of "single-point experiment and system 
fragmentation". The heterogeneity of technological ecology 
and the locality of scene coverage further aggravate the 
discretization of regional educational resources. Specifically, it 
is characterized by the following two contradictions. The first 
aspect is reflected in the heterogeneity of technical standards, 
that is, the bottleneck of cross-system interoperability. There 
are "international-local" dual-track differences in the AI 
technology infrastructure of universities in the Bay Area, 
forming technical barriers for cross-domain collaboration. For 
example, based on the concept of open science, Hong Kong 
universities generally adopt internationally accepted scientific 
research data management systems and follow the principles of 
discoverability, accessibility, interoperability and reusability; 
Affected by data security regulations and localization 
adaptation needs, mainland universities mostly deploy 
independent and controllable platforms such as CNKI Research 
Collaboration System and Huawei ModelArts. The differences 
between the two in terms of metadata architecture, interface 
protocols, rights management and other technical standards 
lead to complex format conversion and protocol adaptation for 
cross-school data sharing, which significantly increases 
collaboration costs. This "honeycomb" distribution of 
technological ecology essentially reflects the structural 
mapping of regional institutional differences in digital space. 
The second aspect focuses on the imbalance of application 
scenarios, that is, the "technology clustering" in low value-
added fields. The penetration of AI technology shows obvious 
scene gradient differentiation, forming a value depression of 
"redundant basic applications and absence of core scenarios". 
The basic layer technology of teaching assistance and 
administrative office is redundant, such as single-point tools 
such as Shenzhen University's intelligent attendance system 
based on face recognition and Macao University's RPA-driven 
administrative process automation, which have become 
saturated, but their functions are limited to improving 
transactional efficiency. The core layer technology penetration 
of scientific research collaboration and strategic decision-
making is insufficient, and cross-school joint scientific research 
faces the lack of platforms. For example, the joint modeling of 
meteorological big data in the Greater Bay Area still relies on 
traditional data copying and manual integration due to the lack 
of distributed AI training framework; The strategic decision-
making of higher education clusters for discipline layout 
optimization and talent demand forecasting has not yet 
established a data-driven dynamic simulation model, and 
mostly relies on empirical judgment and static statistical 

analysis. This technical layout of "emphasizing the end and 
neglecting the center" restricts the transition of AI from 
instrumental empowerment to systemic change. 

(2) Deep-seated incentives for technological discretization 
Under the framework of "one country, two systems", the 

cross-domain flow of technological elements is facing the 
dilemma of structural dispersion. This discrete phenomenon is 
not only reflected in the physical fragmentation caused by 
institutional barriers, but also contains the application 
dislocation caused by differences in value orientations, which 
ultimately forms the regional fracture of the technological 
ecosystem. First of all, legal differences at the institutional level 
constitute the primary obstruction. There is a fundamental 
conflict between the principle of data sovereignty jurisdiction 
established by the Mainland's Data Security Law and the cross-
border transmission whitelist mechanism stipulated in Hong 
Kong's Personal Data Privacy Ordinance. Mutual recognition 
standards have not yet been formed in key links such as data 
classification and classification and exit security assessment. 
This "connection deficit" of legal texts directly makes it 
difficult to achieve cross-jurisdictional allocation of computing 
resources and data assets, forming a regional segmentation of 
technical infrastructure. For example, the empirical case of a 
cross-border AI laboratory shows that when the scientific 
research data of the three places needs to meet the mainland's 
network security review, Hong Kong's Office of the Privacy 
Commissioner for Personal Data filing, and Macao's 
Cybersecurity Law compliance requirements, physical isolation 
has to be adopted. The "data localization" solution has caused 
the model iteration efficiency under the federated learning 
framework to plummet by 60%, highlighting the inhibitory 
effect of institutional rigidity on technological synergy. 
Secondly, the difference of value orientation at the level of 
philosophy of technology constitutes a deeper discrete 
motivation. The mainland higher education system tends to 
position AI technology as a tool carrier to improve the 
efficiency of educational governance, focusing on optimizing 
the teaching management process through intelligent 
algorithms and realizing the accurate allocation of large-scale 
educational resources. Academic institutions in Hong Kong and 
Macao put more emphasis on the ethical boundaries of 
technology applications, focusing on value risks such as 
algorithm discrimination and alienation of academic freedom, 
and forming a prudent innovation path oriented by "science and 
technology for good". This difference in value orientation is 
embodied as a conflict of technical routes in cross-domain 
scientific research cooperation, that is, when mainland teams 
advocate the introduction of behavior prediction algorithms to 
optimize the course selection system, Hong Kong and Macao 
partners often require the addition of algorithm transparency 
review and ethical impact assessment modules, resulting in 
research and development The cycle is extended by an average 
of 40%. Finally, the essence of technological discrete is the 
projection of the regional division between institutional logic 
and value rationality in the digital age. To solve this structural 
contradiction, it is necessary to build a "technical governance 
community" that transcends a single jurisdiction. Through 
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institutional innovations such as establishing a negative list for 
cross-border data flows and establishing an AI ethics joint 
review committee, we can ensure data sovereignty security and 
promote the circulation of technical elements. Seek a dynamic 
balance between them. 

III. INTELLIGENT SYMBIOSIS: THE THEORETICAL FRAMEWORK 
OF AI-DRIVEN GUANGDONG-HONG KONG-MACAU GREATER 

BAY AREA CLUSTER COLLABORATION 
(1) Technical connection: building a cluster nervous system 
As the underlying architecture of the intelligent symbiotic 

ecology, technology connection aims to build the "digital 
nervous system" of Guangdong-Hong Kong-Macau Greater 
Bay Area's higher education cluster through the systematic 
integration of computing power and data, break through 
physical space restrictions and institutional barriers, and realize 
the organic linkage of technical resources. 

On the one hand, it uses distributed computing power 
networks and heterogeneous resource collaborative scheduling 
mechanisms. In response to the dilemma of "islanding" 
computing power resources in universities in the Bay Area, a 
cross-domain elastic computing power sharing network can be 
built to achieve dynamic adaptation of heterogeneous 
computing nodes. The specific path includes integrating 
landmark infrastructure such as Hong Kong's "Advanced 
Computing Platform" and Guangzhou's "Tianhe-2" 
supercomputing center, and relying on 5G-MEC (Multi-Access 
Edge Computing) technology to deploy low-latency 
communication links to form a "core-edge-terminal" three-level 
computing power architecture. This architecture supports 
millisecond-level response and task offloading to meet the real-
time requirements of cross-school AI model joint training. For 
example, the biomedical multi-modal AI model jointly 
developed by Sun Yat-sen University and the University of 
Macau improves the efficiency of complex genome data 
analysis by 47% by dynamically allocating GPU clusters at 
Hong Kong nodes and FPGA accelerators at Zhuhai edge 
nodes. This kind of practice shows that the synaptic connection 
of computing power network can effectively resolve the 
coexistence of "computing power hunger" and "computing 
power idle" caused by resource discretization. On the other 
hand, relying on the federated data middle platform, a 
knowledge fusion engine driven by privacy computing is 
established. Under the constraints of data sovereignty and 
privacy protection, it is necessary to build a federal data space 
that complies with FAIR principles. Based on homomorphic 
encryption and secure multi-party computing technology, a 
virtual aggregation middle platform with "data immobile model 
movement" is designed to enable universities to realize cross-
domain knowledge value extraction while retaining data control 
rights. Typical practices include the "Cross-border Academic 
Situation Federal Analysis System" jointly developed by 
universities in Zhuhai, Hong Kong and Macao. Hong Kong 
universities provide encrypted metadata of learning behavior, 
Zhuhai universities deploy federal recommendation algorithms, 
and Macao nodes perform differential privacy disturbance, 
which finally generates personalized teaching strategies in a 

state of non-transparent data, improving the accuracy of course 
adaptation by 32%. This mechanism replaces institutional 
compromise through technical trust, providing a feasible path 
for the compliant flow of sensitive data elements. 

This technology connection model of "computing power 
network + data middle platform" not only realizes the efficient 
utilization of hardware resources, but also bridges the synergy 
barriers caused by institutional differences through 
technological innovation, providing in-depth cooperation 
between universities in the Greater Bay Area in the field of AI. 
Provides a reusable infrastructure paradigm. Its core value lies 
in weaving discrete technology nodes into an intelligent 
network with self-regulating capabilities, transforming 
computing power and data from "private resources of colleges 
and universities" into "cluster public goods", and providing the 
intelligence of core scenarios such as scientific research 
collaboration and talent training. Upgrade lays the foundation. 

(2) Ecological empowerment: activating cluster innovation 
potential 

In the construction of Guangdong-Hong Kong-Macau 
Greater Bay Area's technology ecology, the ecological 
empowerment mechanism realizes the exponential release of 
innovation potential energy through the two-way interaction 
between technology empowerment and demand traction. At the 
level of discipline innovation, based on multi-modal knowledge 
graph construction technology, an intelligent discovery system 
at the intersection of disciplines in universities in the Bay Area 
is established. Through natural language processing and 
knowledge extraction algorithms, the system performs 
semantic association analysis on literature metadata of regional 
dominant disciplines such as Shenzhen artificial intelligence, 
Hong Kong financial engineering, and Guangzhou 
biomedicine, and generates a dynamically evolving "AI + X" 
interdisciplinary research map. This technology-enabled 
discipline integration mechanism has successfully guided the 
scientific research resources in the Bay Area to gather in 
strategic frontier fields such as quantum computing and brain-
computer interface, forming an innovation chain coupling 
effect of "basic research-technological research-industrial 
transformation". In the dimension of talent cultivation, build an 
intelligent portrait system of human-machine collaboration to 
reshape the talent cultivation ecology. By developing an AI 
professional ability portrait platform connected to the Greater 
Bay Area's industrial demand database, transfer learning 
technology is used to establish a mapping model of talent ability 
characteristics and job skill map. In the practice of digital 
transformation of Dongguan manufacturing industry, this 
system successfully improved the forecast accuracy of 
industrial Internet talent demand to 92%, and accordingly 
driven universities such as South China University of 
Technology to dynamically optimize the professional 
curriculum system, forming an intelligent closed loop of 
"industrial demand drive-education supply response-
employment quality feedback". This data-driven talent training 
mode improves the fit between discipline and specialty setting 
and regional industrial upgrading by 41%, which verifies the 
deep integration path of education chain and industrial chain 
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under technology empowerment. 
(3) Co-evolution: cultivating an adaptive ecology 
In order to realize the intelligent symbiosis of Guangdong-

Hong Kong-Macau Greater Bay Area's higher education 
clusters, it is necessary to build an adaptive ecology with self-
iteration ability, the core of which lies in establishing a closed-
loop evolution mechanism of "perception-decision-evolution". 
First, the reinforcement learning framework is used to build a 
cluster development digital twin, collect multi-source 
heterogeneous data in real time, such as paper co-authorship 
network, patent coupling strength, technology conversion rate, 
etc., and use deep Q network (DQN) to train a dynamic 
evaluation model to quantify inter-school cooperation. 
Closeness and knowledge spillover effectiveness. When a 
continuous threshold drop in the frequency of cooperation in a 
specific field is detected, the system automatically triggers a 
"collaborative failure" early warning and generates an 
intervention plan based on graph neural network. Secondly, the 
blockchain smart contract framework is introduced to develop 
a distributed rule engine, and cross-border collaboration rules 
are encoded into automatically executable on-chain protocols. 
For example, for basic research projects, the lightweight 
consensus mechanism of "dynamically allocating intellectual 
property rights according to contribution" is preset; For 
application development collaboration, a two-tier contract 
model of "prior verification + posterior traceability" is adopted, 
combined with Bayesian game algorithm to optimize the 
benefit distribution scheme. The two-wheel drive mechanism 
realizes the paradigm shift from passive response to active 
evolution through the coupling feedback of data flow and rule 
flow, and makes the collaboration efficiency of the cluster 
ecosystem show exponential adaptive growth. 

IV. PARADIGM TRANSITION: THREE MAJOR TRANSFORMATION 
PATHS FROM TECHNOLOGY DISCRETE TO INTELLIGENT 

SYMBIOSIS 
(1) Resource allocation paradigm: from "administrative 

leadership" to "algorithm collaboration" 
The innovation of resource allocation paradigm is a key 

breakthrough point for Guangdong-Hong Kong-Macau Greater 
Bay Area's higher education clusters to move from 
administrative collaboration to intelligent symbiosis. Its core 
lies in reconstructing resource matching logic with AI 
algorithms, promoting the transfer of decision-making subjects 
from "administrative authority" to "data intelligence", and 
realizing the dual improvement of resource allocation 
efficiency and collaboration quality. In the construction of 
intelligent supply-demand matching mechanism, the intelligent 
trading platform of higher education resources in Greater Bay 
Area breaks through the inefficiency of the traditional 
administrative-led mode by building a closed-loop system of 
"demand release-algorithm analysis-accurate matching-effect 
feedback". Universities, scientific research institutions and 
enterprises can publish multi-dimensional information such as 
equipment sharing, scientific research cooperation, and talent 
demand on the platform. The AI algorithm is based on 12 core 
parameters such as historical cooperation performance data, 
resource idle rate, and discipline matching, and uses 

collaborative filtering algorithms to generate optimal partner 
recommendation list. Through comparative analysis with 
traditional models, the advantages of intelligent algorithm 
collaboration are significantly presented. In the scenario of 
"Guangdong-Hong Kong-Macao University Alliance Project 
Application", the traditional process relies on the administrative 
department to manually sort out the cooperation intention and 
screen the cooperation subjects. On average, each project needs 
to go through 3 rounds of communication, which takes about 3 
months, and there are matching errors caused by information 
asymmetry. After the introduction of the AI intelligent 
matching system, the project applicant only needs to submit key 
information such as research direction and resource 
requirements. The algorithm automatically extracts the partners 
with a matching degree of ≥ 85% from the alliance university 
database, and generates a visual report containing the 
cooperation basis and risk assessment. The whole process is 
compressed to 2 weeks, and the discipline fit of the partners is 
increased to 94%, and the project success rate is increased from 
58% to 79%. The essence of this paradigm transformation from 
"administrative leadership" to "algorithm collaboration" is to 
transfer the decision-making power of resource allocation from 
the bureaucratic system to the data-driven intelligent system, 
which not only avoids the subjective deviation of human 
intervention, but also activates the value of idle resources 
through real-time dynamic matching. Its deep significance lies 
in the construction of a new collaborative mechanism of 
"government guidance-market operation-technology 
empowerment", which provides an efficient and fair resource 
allocation solution for the sustainable development of higher 
education clusters. 

(2) Organizational governance paradigm: from "bureaucratic 
fragmentation" to "network autonomy" 

In the field of Guangdong-Hong Kong-Macau Greater Bay 
Area technology governance, the organizational form is 
undergoing a paradigm transition from bureaucratic 
fragmentation to networked autonomy. This transformation 
reshapes the collaboration model of cross-jurisdictional entities 
through distributed technology architecture and smart contract 
mechanism. The cluster governance platform based on 
blockchain transforms multiple entities such as universities, 
enterprises, and governments into consensus nodes with equal 
participation. The AI voting system realized through smart 
contracts shows technical empowerment effects in the 
formulation of cross-border scientific research cooperation 
policies, such as the dynamic adjustment of the whitelist of 
cross-border data transmission, which is automatically 
executed after verification by multi-party nodes, shortening the 
policy iteration cycle by 63%.%. This decentralized decision-
making mechanism effectively solves the lag of the traditional 
administrative level's response to technological innovation. 
Aiming at the level of institutional adaptation, the policy 
semantic transformation engine builds a technical bridge across 
jurisdictional rules. The engine uses natural language 
processing technology to deconstruct the heterogeneous 
educational laws and regulations in Guangdong, Hong Kong 
and Macao into machine-readable rule meta-language, and 
realizes concept mapping through knowledge graph. In the 
cross-border academic certification scenario, the system 
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successfully transformed the mutual recognition rules of credits 
between the two places into a unified algorithm model, which 
improved the efficiency of certification audit by 81%. This 
technical institutional translation essentially creates a "rule 
middleware" beyond legal texts, realizes the flexible bridging 
of institutional differences through coded expression, and 
provides a technical solution for the modernization of regional 
governance. 

(3) Value creation paradigm: from "individual competition" 
to "ecological win-win" 

Guangdong-Hong Kong-Macau Greater Bay Area's higher 
education cluster is undergoing a value creation paradigm 
transition from zero-sum game to symbiotic development. Its 
essence is to realize cross-organizational reorganization of 
innovative elements and niche complementarity through AI 
technology. The core path lies in building an intelligent 
collaborative network with ternary integration of "knowledge-
industry-system", that is, relying on the federated learning 
architecture to integrate the basic research capabilities of Hong 
Kong universities, the scene verification facilities of Shenzhen 
enterprises and the industrialization resources of Dongguan 
manufacturing to form a chain acceleration mechanism of 
"R&D-transformation-industrialization". The network 
automatically triggers value allocation through smart contracts, 
enabling Hong Kong's algorithm patents, Shenzhen's 
engineering optimization schemes and Dongguan's process data 
to realize factor combination innovation under blockchain 
confirmation. Typical cases show that industrial quality 
inspection based on Transformer architecture The model takes 
only 11 weeks from paper publication to production line 
deployment, which is 67% shorter than the traditional path. In 
order to quantitatively evaluate the effectiveness of ecological 
transformation, it is necessary to establish a multi-modal 
evaluation system that integrates complex network analysis and 
entropy method, which can be roughly divided into three 
system dimensions. The "knowledge flow intensity" dimension 
adopts cross-domain patent coupling degree and academic 
community intermediate centrality index to measure the 
efficiency of tacit knowledge transfer; The dimension of 
"technology radiation energy level" constructs the depth index 
of AI technology embedding and the response function of 
industrial upgrading; The "ecological resilience" dimension 
simulates the adaptive reorganization capability of the system 
under external shocks through the LSTM neural network. 
Empirical research shows that from 2020 to 2023, the niche 
overlap of the Guangdong-Hong Kong-Macao Industry-
University-Research Consortium will decrease by 38%, while 
the resilience entropy of the innovation chain will increase by 
2.1 times, confirming that the AI-driven technology-industrial 
hyper-domain network has effectively achieved "Pareto" 
Improvement "value creation. 

V. IMPLEMENTATION GUARANTEE: THE SUPPORT SYSTEM OF 
INTELLIGENT SYMBIOTIC ECOLOGY 

(1) Technical standard collaboration: construction of multi-
modal interoperability framework 

Establishing a technical standard collaboration system of 
"sovereign compatibility and dynamic evolution" is a key 
breakthrough to solve the asymmetry problem of technical 

institutions in Guangdong-Hong Kong-Macau Greater Bay 
Area's cross-border AI applications. Its core lies in the inclusive 
construction of technical rules under the framework of "one 
country, two systems" through multi-stakeholder collaborative 
governance and flexible mechanism design. The specific 
implementation path is based on "standard negotiation-
technology adaptation-sandbox verification". First, the "Bay 
Area AI Education Standards Committee" composed of 
government education departments of Guangdong, Hong Kong 
and Macao, university alliances, leading technology enterprises 
and academic institutions is established to build a cross-domain 
consultation mechanism. The committee is responsible for 
formulating the "White Paper on AI Application Standards in 
Guangdong-Hong Kong-Macau Greater Bay Area's Higher 
Education", focusing on the three major technical breakpoints 
of data flow, computing power interconnection, and ethical 
norms. The educational data of colleges and universities is 
stored in the "sovereign cloud" of the National Supercomputing 
Shenzhen Center, and Hong Kong and Macao data is retained 
on local servers. Cross-domain data verification and joint 
modeling are realized through zero-knowledge proof 
technology, which not only meets the mainland data 
sovereignty requirements, but also complies with Hong Kong 
and Macao privacy protection regulations; Second, in the field 
of computing power collaboration, define an extended protocol 
based on OpenAPI 3.0, which is compatible with heterogeneous 
computing platforms such as Huawei Ascend and Nvidia 
CUDA, and establish a computing power sharing mechanism of 
"unified interface-dynamic scheduling-performance 
monitoring", so that the computing power resources of Hong 
Kong's "Advanced Computing Platform" and Guangzhou's 
"Tianhe-2" can achieve millisecond-level response through 5G 
networks; Third, in terms of ethical constraints, establish a 
negative list system for AI applications, clarify prohibitive 
clauses such as prohibiting the use of facial recognition data for 
comprehensive evaluation of students, prohibiting 
discriminatory pricing of algorithms, etc., and realize the 
automated execution and real-time monitoring of binding 
clauses through smart contract technology. Secondly, relying 
on institutional innovation carriers such as Hengqin 
Guangdong-Macao Deep Cooperation Zone and Shenzhen 
Hetao Shenzhen-Hong Kong Science and Technology 
Innovation Cooperation Zone, standard sandbox verification 
will be carried out. For example, the "Guangdong-Hong Kong-
Macao AI Joint Laboratory" sandbox project launched in 2023 
reduces the delay of cross-border scientific research data calls 
to 12 milliseconds by deploying a federated learning framework 
and edge computing nodes, meeting the requirements of the 
ISO/IEC 20547-4 international standard Requirements for real-
time data interaction while ensuring compliance with data not 
leaving the country. This kind of stress test not only provides 
empirical basis for the feasibility of technical standards, but 
also promotes the upgrade of the standard system from "static 
consensus" to "adaptive evolution" through the dynamic 
evolution mechanism of "problem discovery-rule iteration-
ecological adaptation", and finally forms a new paradigm of 
intelligent governance that not only adheres to the principle of 
national sovereignty, but also is compatible with regional 
institutional differences. 
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(2) Talent echelon construction: cultivating compound 
innovation forces 

The structural reform of talent supply side is the core kinetic 
energy of the intelligent symbiotic ecological construction of 
higher education. It is necessary to build a three-dimensional 
talent development network with deep integration of 
educational science and technology through the reshaping of 
ability standards, the reengineering of knowledge systems and 
the innovation of training models. At the first competency 
standard level, a teacher qualification accreditation system 
based on TPACK (Subject Teaching Knowledge with 
Integrated Technology) model is established. The AI Education 
Teacher Certification Center jointly established by Guangdong, 
Hong Kong and Macao has formulated the "Cross-domain 
Dual-qualified Teacher Ability Standard", covering Three core 
modules: educational neuroscience cognition, AI technology 
application and cross-cultural teaching method. At the same 
time, the certification adopts a multi-modal evaluation 
framework, the theoretical test relies on the cognitive diagnosis 
model (CDM) to dynamically monitor knowledge blind spots, 
and the practical link requires the development of lightweight 
AI tools with teaching decision support functions, such as 
classroom interactive analysis plug-ins based on natural 
language processing. As of 2024, the system has trained 586 
dual-qualified teachers who have passed standardized 
certification, and its interdisciplinary curriculum development 
efficiency is 2.3 times higher than that of traditional teachers. 
The second knowledge system layer is to create a micro-major 
cluster of "technology-education-design", such as the micro-
major of "intelligent education system development" jointly 
established by Macau University of Science and Technology 
and South China University of Technology. The OBE 
(achievement-oriented education) mode is adopted to set up the 
curriculum chain of "machine learning foundation-educational 
data governance-immersive learning environment design", and 
the whole process practice from data collection to model 
deployment is closed-loop through project-based learning 
(PBL). The third training mode layer is to build a dual training 
ecosystem linked by Industry-University-Research. The 
"Algorithm Engineer Ability Workshop" jointly created by the 
Chinese University of Hong Kong and Tencent AI Lab 
introduces real project data sets of enterprises and adopts the 
"dual tutor system + agile development" mode, which enables 
trainees to complete the ability transition from theoretical 
transformation to industrial-grade code submission within the 
48-week training period. In the past three years, 327 
professional certified engineers have been sent to AI enterprises 
in Greater Bay Area, with a direct employment rate of 92%. 
This three-dimensional training system provides a compound 
talent support with both theoretical depth and practical 
innovation for the intelligent symbiotic ecology through the 
optimization of teacher structure, the reconstruction of 
curriculum system and the deep integration of production and 
education. 

(3) Risk prevention and control mechanism: building a solid 
bottom line of technical ethics and safety 

As the safety cornerstone of the intelligent symbiotic ecology, 
the risk prevention and control mechanism achieves a dynamic 
balance between innovation incentives and risk management 
and control by building a full-chain governance system of 

"technical reliability review-ethical compliance assessment-
dynamic monitoring response". First of all, establish a 
feasibility review system for AI educational application 
technology, and a third-party professional organization 
conducts multi-dimensional evaluation of technical solutions, 
requiring the intelligent teaching system to meet hard technical 
indicators such as model accuracy ≥ 90% and response delay 
≤ 500 milliseconds, and enforce Implement the mechanism of 
"small-scale pilot-feedback optimization-comprehensive 
promotion". For example, the "intelligent homework correction 
system" developed by a university has been piloted in 12 classes 
for 3 months. After optimizing the algorithm according to 237 
improvement suggestions put forward by teachers and students, 
the accuracy rate of composition correction has been improved 
from 78% to 89% before it is approved to be popularized 
throughout the school. Secondly, an interdisciplinary ethics 
committee is established, composed of educators, AI technical 
experts, legal scholars and student representatives, to conduct 
pre-ethical review of AI applications. For example, in response 
to the facial data collection problem involved in the "Student 
Emotion Recognition System" of a university, the ethics 
committee, in accordance with the "Personal Information 
Protection Law" and the "Educational Data Security Standard", 
requires that the system be only used for classroom interactive 
analysis, and prohibits association with academic evaluation. 
The data storage time limit is set to 3 months, and the original 
information will be automatically deleted when it expires, so as 
to prevent the risk of privacy leakage and algorithm abuse from 
the source. Finally, a dynamic monitoring platform for AI 
educational applications is built to establish a risk early warning 
model by capturing technical indicators such as system failure 
rate and user complaint rate in real time, as well as social 
feedback data such as social media public opinion and parent 
satisfaction surveys. For example, when the data leakage 
incidence rate of a cross-border AI teaching platform exceeds 
the threshold for two consecutive months, the platform 
automatically triggers a three-level emergency response, 
completes the technical vulnerability repair within 72 hours, 
starts the responsibility traceability procedure within 1 week, 
and releases the rectification report to the public within 15 days 
to ensure the timeliness and transparency of risk prevention and 
control. This trinity prevention and control system organically 
unifies technical rationality, ethical norms and social 
adaptability, and builds a multi-level security barrier for the 
sustainable development of intelligent symbiotic ecology. 

Ⅵ. CONCLUSION 
Guangdong-Hong Kong-Macau Greater Bay Area's higher 

education cluster is undergoing a profound change from 
technological discretion to intelligent symbiosis. Through AI 
empowerment, a coordinated development path of 
"technological connection-ecological empowerment-
mechanism innovation-talent drive" has been explored. At the 
level of technical connection, the cluster has built a cross-
domain computing power network and a federated data middle 
platform to achieve systematic integration of computing power 
and data, and through distributed technology architecture and 
smart contract mechanism, it promotes the organizational 
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governance paradigm from "bureaucratic fragmentation" "Turn 
to" network autonomy "to effectively break down institutional 
barriers. The ecological empowerment mechanism activates the 
potential energy of cluster innovation through multi-modal 
knowledge graph and intelligent portrait system, and promotes 
the intelligent upgrading of discipline innovation and talent 
cultivation. At the same time, it uses the reinforcement learning 
framework and blockchain intelligent contract to realize the 
dynamic evaluation and intelligent intervention of cluster 
development. In terms of mechanism innovation, universities in 
the Greater Bay Area have established a resource allocation 
paradigm from "administrative leadership" to "algorithm 
collaboration" to improve the efficiency of resource allocation. 
By establishing mechanisms such as a negative list for cross-
border data flow and an AI ethics joint review committee, they 
have Seek a dynamic balance between ensuring data 
sovereignty security and promoting the circulation of technical 
elements. The structural reform of talent supply side is the core 
kinetic energy of the construction of intelligent symbiotic 
ecology. Through the teacher qualification accreditation system 
based on TPACK model, the micro-professional cluster of 
"technology-education-design" and the dual system cultivation 
ecology linked by Industry-University-Research, we cultivate 
compound talents and provide intellectual support for regional 
innovation. This collaborative paradigm transition is not only 
an in-depth application of AI technology, but also a 
comprehensive innovation of the collaborative development 
model of regional education, injecting strong impetus into 
regional economic and social development. 
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