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Abstract

With the advancement of multimodal perception tech-
nologies, integrating visible (RGB) and thermal infrared
(THR) information has become a key approach to enhanc-
ing the robustness of visual systems under complex il-
lumination conditions. While existing studies primarily
focus on improving quantitative accuracy through mul-
timodal fusion, less attention has been paid to the per-
ceptual differences and consistency between modalities.
This study investigates the performance–perception dis-
crepancy in multimodal depth estimation under varying
illumination scenarios. Through comparative experiments
between RGB and THR modalities, the analysis reveals
that THR exhibits superior numerical performance (e.g.,
lower RMSE and AbsRel) in low-light and nighttime con-
ditions, yet suffers from perceptual degradation such as
over-smoothing and structural blurring. Moreover, by ref-
erencing findings in multimodal object detection, this phe-
nomenon is shown to be task-general, arising from the dis-
tinct spatial frequency responses of different modalities.
The presented results provide empirical evidence and the-
oretical insight for future research on multimodal feature
fusion and perceptual consistency optimization.

Index Terms— Depth Estimation, Multimodal, Illumination
Robustness, Quantitative Evaluation, Visual Consistency.

1 Introduction
Recent advances in computer vision have enabled machines
to perceive and reconstruct 3D structures from visual data
with remarkable accuracy, particularly through deep learn-
ing–based monocular depth estimation (MDE) methods [1,
25]. These models have achieved significant progress in au-
tonomous driving, robotics, and scene understanding [3, 17].
However, RGB-based depth estimation systems remain sen-
sitive to environmental variations—especially in challeng-
ing illumination conditions such as nighttime or adverse
weather—where visible light becomes unreliable.

Thermal infrared (THR) imaging provides a promising
complementary modality in such environments. By captur-
ing infrared radiation emitted by objects above absolute zero,
thermal cameras can perceive structures that are invisible to

the RGB spectrum, offering illumination invariance and ro-
bustness to occlusion and haze [11, 5]. As illustrated in prior
multimodal vision studies, THR sensors have been success-
fully used for tasks such as salient object detection, pedes-
trian recognition, and image segmentation, thanks to their
strong response to heat-emitting objects even in complete
darkness [11, 5]. Nevertheless, when applied to depth esti-
mation, thermal images introduce new challenges: they often
exhibit low resolution, limited texture, and reduced semantic
richness, making fine-grained 3D reconstruction difficult.

To address these challenges, multimodal fusion between
RGB and THR modalities has emerged as a viable strat-
egy. Recent works have explored RGB–Thermal integra-
tion through two primary paradigms: (1) feature-level fusion
networks that combine spatial and channel-wise cues from
both modalities to enhance representation learning [20, 27],
and (2) cross-modal distillation frameworks that transfer ge-
ometric knowledge from large-scale RGB foundation mod-
els to thermal networks using confidence-aware consistency
objectives [15, 24, 2]. Despite these advances, the perfor-
mance–perception inconsistency remains a largely overlooked
issue in multimodal depth estimation: quantitative metrics
such as RMSE or AbsRel may improve significantly through
thermal guidance, while the resulting depth maps exhibit vi-
sual artifacts such as texture loss or oversmoothing.

This discrepancy highlights a fundamental property of
multimodal depth perception—the asymmetric contribution
of RGB and THR features. RGB imagery captures high-
frequency textures and detailed semantics but degrades rapidly
in dark scenes, whereas THR imagery maintains structural
continuity at the cost of visual sharpness. Existing multimodal
fusion models [14, 4] often overlook this imbalance by treating
both modalities uniformly, resulting in fused representations
that may optimize numerical performance but fail to achieve
perceptual coherence.

In this study, we systematically analyze the perfor-
mance–perception discrepancy in multimodal depth estima-
tion under varying illumination conditions. Using a series
of controlled experiments comparing RGB, THR, and fused
modalities, we observe that thermal-based estimation yields
superior quantitative metrics but perceptually degraded visual
results. We further discuss the relevance of this phenomenon
to other multimodal tasks, such as object detection and salient
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object segmentation, where similar modality-dependent trade-
offs have been observed [19, 26]. The findings of this study
provide empirical evidence and analytical insights for devel-
oping future multimodal perception systems that balance ac-
curacy with perceptual fidelity.

The main contributions of this paper are as follows:

• We conduct an empirical analysis of RGB–thermal
(RGB–THR) depth estimation under varying illumina-
tion, revealing a clear performance–perception discrep-
ancy.

• We identify that this discrepancy arises from modality-
dependent feature characteristics, where THR improves
quantitative accuracy but weakens visual fidelity.

• The findings provide experimental evidence and insight
for subsequent research on multimodal feature fusion and
perceptual consistency optimization.

2 Related Works

2.1 RGB and Thermal Imaging in Visual Tasks
Multimodal perception has emerged as a key paradigm in
computer vision to improve robustness against illumination
changes, occlusions, and environmental degradation. Among
various modality combinations, visible-light (RGB) and ther-
mal infrared (THR) imaging form a particularly complemen-
tary pair. RGB sensors capture reflected visible light, provid-
ing rich texture and color cues essential for semantic under-
standing and fine spatial delineation. In contrast, THR cam-
eras sense long-wave infrared radiation emitted by objects, en-
abling reliable perception under adverse or low-illumination
conditions [23].

The integration of RGB and THR data has been explored
across numerous vision tasks, including pedestrian detection,
salient object detection, semantic segmentation, and scene un-
derstanding [7, 8, 13]. For example, multispectral detectors
trained on datasets such as KAIST and LLVIP have shown that
thermal cues can significantly enhance nighttime pedestrian
recognition [8, 7]. In salient object detection, cross-modality
interaction modules and attention-guided fusion methods [13,
28] leverage complementary modality information to achieve
robust target localization under dynamic lighting. Similarly,
RGB–THR fusion in semantic segmentation improves feature
stability at the object boundary level [21], confirming the ben-
efit of multimodal integration in challenging environments.

The advantages of RGB–THR fusion extend beyond con-
ventional image analysis. Recent studies have applied multi-
spectral fusion to domains such as autonomous driving [22],
UAV-based surveillance [16], and robotics [9], where the goal
is to achieve all-day, all-weather perception. These applica-
tions emphasize that while RGB features provide geometric
and semantic richness, THR inputs ensure visibility and struc-
tural consistency across varying conditions—highlighting the
importance of effective cross-modal fusion for real-world de-
ployment.

2.2 Multimodal Fusion Strategies and Emerg-
ing Challenges

With the success of deep learning, multimodal fusion has
evolved from handcrafted feature concatenation to learned
feature-level and attention-based strategies. Early fusion ap-
proaches such as pyramid-based blending or weighted averag-
ing [18, 12] mainly focused on pixel-level enhancement with-
out learning task-specific representations. Modern deep fu-
sion frameworks employ dual-stream encoder–decoder archi-
tectures, where modality-specific features are extracted inde-
pendently and later integrated via cross-attention or adaptive
weighting [13, 10]. These designs enable networks to selec-
tively exploit complementary signals, improving the robust-
ness and adaptability of multimodal perception systems.

More recently, researchers have introduced transformer-
based and frequency-aware models to enhance cross-modal
representation learning. Transformer architectures offer global
context modeling between RGB and THR modalities [16],
while frequency-domain analyses reveal that different modali-
ties contribute unevenly across spatial frequency bands—RGB
features dominate high-frequency detail, whereas THR fea-
tures emphasize low-frequency structure [6]. Such insights
have motivated new fusion pipelines that adaptively balance
modalities according to scene characteristics.

Despite remarkable progress in multimodal fusion, most
existing studies still focus primarily on quantitative perfor-
mance indicators such as accuracy or mIoU, while the per-
ceptual quality of fused results has received far less attention.
In practice, numerical improvements do not necessarily im-
ply perceptually consistent or visually coherent outputs. Our
experiments clearly reveal that the inclusion of thermal infor-
mation can stabilize numerical accuracy yet sometimes lead to
degraded visual realism. This observation indicates that nu-
merical metrics alone cannot comprehensively represent the
overall quality of multimodal perception. Therefore, our study
emphasizes the need to re-examine RGB–THR fusion from a
dual perspective—quantitative performance and perceptual fi-
delity—to achieve a more balanced and interpretable evalua-
tion of multimodal systems.

3 Comparative Evaluation

3.1 Experimental Setup
Dataset.

All experiments in this study are conducted on the Multi-
Spectral Stereo (MS2) Dataset [14], a large-scale outdoor
benchmark designed for multisensor perception and depth es-
timation research, as illustrated in Fig. 1.

The dataset provides synchronized recordings from stereo
RGB, stereo near-infrared (NIR), and stereo thermal (THR)
cameras, together with stereo LiDAR scanners and GPS/IMU
navigation units. This comprehensive sensor suite enables
precise geometric calibration and temporal synchronization
across modalities, supporting detailed investigation of multi-
modal visual perception under real-world conditions.

2



Journal of Emerging Applied Artificial Intelligence (JEAAI)

Figure 1: Overview of the Multi-Spectral Stereo (MS2) dataset. The dataset provides synchronized RGB, NIR, and thermal
stereo images captured under diverse environmental conditions (day, night, and rain), along with LiDAR, GPS, and IMU data
for geometric consistency.

The MS2 dataset comprises approximately 184 K rectified
and synchronized stereo image pairs captured across diverse
environments, including urban streets, residential areas, cam-
pus roads, and suburban regions. Each location was recorded
multiple times under varying illumination and weather condi-
tions, covering clear, cloudy, and rainy days, as well as morn-
ing, daytime, and nighttime scenes. Such diversity provides a
valuable basis for studying modality-specific behaviors under
challenging visual scenarios. In addition to multi-spectral im-
agery, the dataset also includes projected LiDAR depth maps,
odometry information in both camera and LiDAR coordinate
systems, and GPS/IMU trajectories to ensure metric-scale con-
sistency.

In this work, we use theleft RGB andleft THR images, to-
gether with their corresponding LiDAR-projected depth maps,
to perform a controlled comparison between visible-spectrum
and long-wave infrared sensing for monocular depth estima-
tion. Both modalities are spatially aligned and temporally syn-
chronized, ensuring consistent supervision during training and
evaluation. The input resolution is fixed at 640×256 pixels,
and we follow the official preprocessing protocol of the dataset
to maintain alignment and radiometric consistency across all
samples.

The MS2 dataset revisits the same physical locations un-
der different illumination and weather conditions, providing
a dense set of multi-condition correspondences for reliable
cross-modal analysis. This feature enables systematic evalu-
ation of modality-dependent robustness across structured and
unstructured environments, as well as across varying visibility
levels such as day, night, and rain. Its synchronized multi-
sensor design and environmental diversity make MS2 a suit-
able benchmark for analyzing how RGB and thermal modali-
ties contribute to stable and reliable depth perception in com-
plex outdoor scenes.

Implementation details. For network implementation, we
employ the ConvNeXt-Tiny backbone as the feature extrac-

tor owing to its balance between computational efficiency and
representational capacity. For the RGB modality, the model is
initialized with ImageNet-pretrained weights to leverage gen-
eral visual priors and accelerate convergence. Since thermal
(THR) images are single-channel inputs lacking color infor-
mation, two configurations are explored to ensure fair evalu-
ation. In the first configuration, the THR image is replicated
across three channels to match the input dimension of the pre-
trained ConvNeXt-Tiny model, thereby enabling weight trans-
fer from the RGB domain. In the second configuration, the
model is trained with a single-channel input using the same
backbone structure but without pretrained initialization, al-
lowing the network to learn modality-specific representations
from scratch.

To maintain a fair comparison between modalities, we do
not employ any data augmentation strategies such as random
flipping, color jittering, or cropping. Both models are trained
under identical hyperparameter settings, including optimizer
configuration, learning rate schedule, and batch size. The im-
plementation is based on PyTorch and executed on an NVIDIA
RTX 4090 GPU with 24 GB of memory.

Training configuration. All models are trained for 25
epochs using the Adam optimizer with parameters β1 = 0.9,
β2 = 0.999, and an initial learning rate of 1 × 10−4. A co-
sine decay schedule is adopted to gradually reduce the learn-
ing rate over time, ensuring stable convergence. The batch size
is set to 8, and all experiments are conducted on an NVIDIA
RTX 4090 GPU with 24 GB of memory. We follow the official
data preprocessing and normalization procedure of the MS2

dataset to maintain consistency across modalities. No addi-
tional data augmentation or modality-specific tuning is applied
during training to ensure a fair comparison between RGB and
thermal inputs.

The overall loss function combines a scale-invariant depth
loss and an edge-aware smoothness term, which are widely
used in monocular depth estimation [4]. The final objective is
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defined as:
L = Lsi + λLsm, λ = 0.1, (1)

where the scale-invariant term Lsi measures relative depth con-
sistency in logarithmic space:

Lsi =
1

n

∑
i

d2i −
1

n2

(∑
i

di

)2

, (2)

with di = logDi−logD∗
i representing the difference between

predicted and ground-truth depth in log scale. The smoothness
regularizer encourages spatial coherence while preserving im-
age edges:

Lsm =
∑
i,j

(
|∂xDi,j |e−|∂xIi,j | + |∂yDi,j |e−|∂yIi,j |

)
, (3)

where D denotes the predicted depth map and I the corre-
sponding input image. This combination ensures both global
depth consistency and local structural smoothness in the pre-
dicted maps.

3.2 Evaluation Metrics
To quantitatively evaluate the performance of depth estima-
tion, we adopt three widely used metrics—Absolute Relative
Error (AbsRel), Root Mean Square Error (RMSE), and
Threshold Accuracy (δi)—which were originally introduced
by Eigen et al. [4].

These metrics jointly capture both the numerical deviation
from the ground-truth depth and the relative structural consis-
tency across scenes. All evaluations are performed on the of-
ficial test split of the MS2 dataset using the unfiltered LiDAR
depth maps as reference.

Absolute Relative Error (AbsRel). This metric measures
the mean relative deviation between the predicted depth Di

and the ground-truth depth D∗
i :

AbsRel =
1

n

n∑
i=1

|Di −D∗
i |

D∗
i

. (4)

A lower AbsRel value indicates a smaller proportional error,
implying that the predicted depth magnitudes are closer to
their true values. Because it normalizes the difference by D∗

i ,
AbsRel is particularly sensitive to near-range regions where
depth changes rapidly, making it an effective indicator of local
depth fidelity.

Root Mean Square Error (RMSE). RMSE evaluates the
overall Euclidean distance between prediction and ground
truth, reflecting global consistency across the entire image:

RMSE =

√√√√ 1

n

n∑
i=1

(Di −D∗
i )

2. (5)

Unlike AbsRel, RMSE penalizes large absolute deviations
more heavily, and is therefore dominated by outlier pixels or
distant regions. A smaller RMSE value corresponds to a glob-
ally smoother and numerically stable depth prediction.

Threshold Accuracy (δi). To assess relative correctness
independent of absolute scale, we follow the standard accuracy
criterion proposed in [4]. For each pixel, the ratio between
prediction and ground truth is computed, and the percentage
of pixels satisfying the threshold condition is reported as

Accuracy(δi) =
1

n

n∑
i=1

I
(
max

(
Di

D∗
i

,
D∗

i

Di

)
< δi

)
(6)

where I(·) denotes an indicator function that equals 1 when
the condition is satisfied and 0 otherwise. The threshold val-
ues are set to δi ∈ {1.25, 1.252, 1.253}, corresponding to in-
creasing levels of tolerance. Higher δi values represent looser
error bounds, while δ1 measures strict accuracy and δ3 cap-
tures broader alignment.

This metric effectively measures how many pixels fall
within a fixed multiplicative error bound, providing a comple-
mentary view to absolute-error measures.

Together, these three metrics provide a comprehensive as-
sessment of depth estimation quality. AbsRel emphasizes rel-
ative precision in nearby regions, RMSE captures global nu-
merical stability, and the threshold-based accuracy highlights
structural consistency under scale variations. By jointly an-
alyzing these indicators, we can evaluate not only the quan-
titative reliability of each modality but also its robustness to
illumination and texture variations present in the MS2 dataset.

3.3 Experimental Results

3.3.1 Quantitative Comparison

Table 1 presents the quantitative evaluation results of monocu-
lar depth estimation using RGB and thermal (THR) modalities
under three illumination conditions—daytime, nighttime, and
rainy—on the MS2 dataset. Both networks were trained un-
der identical optimization and data processing settings to en-
sure fair comparison. Across all environments, the THR-based
model consistently achieves lower error metrics and higher
accuracy rates, indicating that the thermal modality provides
more stable geometric cues and greater robustness to illumina-
tion changes.

Under the daytime condition, the two modalities exhibit
comparable performance, with THR showing a modest im-
provement in most metrics. The AbsRel and RMSE values
of THR (0.08 and 2.96, respectively) are slightly lower than
those of RGB (0.09 and 3.45). This marginal gap is attributed
to the rich texture and color gradients available in RGB im-
ages under sufficient illumination, which enable reliable depth
inference through photometric cues.

In the nighttime condition, the superiority of the thermal
modality becomes prominent. The AbsRel decreases from
0.121 to 0.081, and RMSE drops from 4.11 to 2.84, reflect-
ing a substantial reduction in overall depth error. Further-
more, the δ1 accuracy improves from 0.872 to 0.938, confirm-
ing that THR preserves more consistent structural correspon-
dence when visual information is degraded by low-light noise
and contrast loss. Notably, the performance of THR remains
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Table 1: Quantitative comparison between RGB and THR modalities under different illumination conditions on the MS2 dataset.
Lower is better for AbsRel, SqRel, RMSE, and RMSE(log); higher is better for δi.

Condition Input AbsRel ↓ SqRel ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Day RGB 0.090 0.427 3.454 0.117 0.911 0.979 0.998
THR 0.080 0.342 2.955 0.112 0.941 0.981 0.995

Night RGB 0.121 0.619 4.105 0.153 0.872 0.981 0.989
THR 0.081 0.335 2.844 0.112 0.938 0.980 0.991

Rainy RGB 0.139 0.897 4.841 0.182 0.841 0.913 0.981
THR 0.115 0.549 3.785 0.159 0.875 0.952 0.987

Figure 2: Qualitative comparison of RGB- and THR-based
depth predictions under the daytime condition. The RGB
modality exhibits clearer edges and richer local textures, while
THR outputs appear smoother and more homogeneous.

highly stable between the daytime and nighttime settings, sug-
gesting that thermal imaging is largely invariant to illumina-
tion intensity.

For the rainy condition, both modalities experience in-
creased errors due to reflection, occlusion, and atmospheric
scattering; however, THR still maintains a clear advantage.
The AbsRel decreases from 0.139 to 0.115, and RMSE from
4.84 to 3.79, while δ1 improves from 0.841 to 0.875. These
results indicate that the thermal signal provides more coherent
depth boundaries under adverse weather, mitigating the degra-
dation effects commonly observed in RGB-based estimation.

In summary, the thermal modality exhibits strong resilience
to environmental variations, yielding consistent performance
across both well-lit and low-visibility scenarios. The relatively
small performance gap between daytime and nighttime condi-
tions further demonstrates the illumination-invariant charac-
teristics of thermal sensing, highlighting its potential as a reli-
able alternative or complementary input for robust monocular
depth estimation.

3.3.2 Qualitative Visualization

To provide a visual understanding of the modality-specific dif-
ferences, we further present qualitative depth estimation re-
sults under three illumination conditions from the MS2 dataset:
daytime, rainy, and nighttime. Each visualization includes
the input image and the corresponding predicted depth map
for both RGB and THR modalities, highlighting the contrast
between numerical stability and perceptual fidelity. Under
the daytime condition (Fig. 2), the RGB-based prediction dis-

Figure 3: Qualitative comparison under the rainy condition.
Despite visual occlusions from raindrops and wiper traces,
THR maintains structural continuity, whereas RGB preserves
distant object details with perceptual contrast.

Figure 4: Qualitative comparison under the nighttime condi-
tion. RGB predictions capture meaningful visual cues such as
vehicles and pedestrians, while THR produces smoother yet
less visually expressive results.

plays sharper edges and richer local details. Elements such
as traffic lights and nearby vehicles are distinctly represented,
demonstrating the benefit of texture and color gradients in
depth reconstruction. In contrast, the THR-based map appears
smoother and more uniform, suggesting higher numerical con-
sistency but reduced perceptual richness.

In the rainy scenario (Fig. 3), the scene involves visual oc-
clusion from raindrops and wiper traces. The THR modality
maintains structural coherence since it is unaffected by these
optical distortions, whereas the RGB prediction exhibits local-
ized degradation. Nevertheless, distant objects such as vehi-
cles remain perceivable in the RGB result, indicating that RGB
retains a degree of depth sensitivity even under adverse visual
conditions. Under the nighttime condition (Fig. 4), RGB pre-
dictions capture meaningful spatial cues such as pedestrians
and vehicles with higher perceptual contrast, whereas THR
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maintains smoother yet less expressive results. Despite the
quantitative advantage of THR, the RGB-based outputs deliver
more visually coherent depth perception.

In summary, while the THR modality achieves superior nu-
merical accuracy across all conditions, the RGB modality pro-
duces perceptually more natural and structurally expressive
depth maps. This observation highlights the existence of a per-
formance–perception gap, emphasizing that quantitative supe-
riority does not necessarily correlate with visual plausibility.

4 Discussion

The experimental findings presented in this study reveal a dis-
tinctive divergence between numerical performance and per-
ceptual quality across RGB and thermal (THR) modalities in
monocular depth estimation. Although the THR-based model
consistently outperforms its RGB counterpart in quantitative
indicators—achieving lower AbsRel and RMSE values under
all illumination conditions—the qualitative analysis demon-
strates that RGB predictions exhibit greater visual coherence,
sharper boundaries, and richer structural expressiveness. This
paradoxical outcome reflects the fundamental difference in
how the two modalities encode visual information and how
numerical optimization interacts with perceptual realism.

From a signal interpretation perspective, the thermal modal-
ity captures scene geometry primarily through radiometric
emission differences, resulting in spatially smooth but low-
frequency representations. Such inputs tend to minimize lo-
cal gradient variance and yield stable predictions under low-
visibility environments such as rain or night, explaining the
superior metric values obtained by THR. However, this very
stability comes at the cost of attenuated texture sensitivity,
leading to over-smoothing in depth transitions and the loss of
high-frequency cues that are critical for perceptual depth per-
ception. In contrast, RGB images, rich in color and luminance
gradients, provide abundant local features that enhance fine-
grained spatial reconstruction. Consequently, although RGB
models are more vulnerable to illumination noise, they pre-
serve edge continuity and scene realism—factors that humans
intuitively associate with visual quality.

These findings suggest that numerical accuracy and percep-
tual realism in depth estimation do not necessarily converge,
especially across heterogeneous modalities. The observed
performance–perception gap highlights a limitation of exist-
ing training objectives, which typically optimize for pixel-
wise consistency while overlooking perceptual-level coher-
ence. This misalignment underscores the need for evalua-
tion frameworks that jointly assess numerical and perceptual
aspects of depth quality, particularly in multimodal contexts
where the data distributions are inherently unbalanced.

Future work should extend these insights toward modality-
aware fusion frameworks that integrate the complementary
strengths of RGB and THR sensing. Such methods could
employ frequency-domain alignment or cross-modal attention
to adaptively emphasize texture fidelity in RGB while lever-
aging the radiometric stability of THR under adverse condi-

tions. Moreover, perceptually motivated loss functions and
human-centered evaluation metrics may bridge the current gap
between objective performance and subjective visual realism.
Ultimately, achieving both quantitative robustness and percep-
tual fidelity will be a crucial step toward building reliable, in-
terpretable, and human-aligned depth estimation systems for
real-world applications.

5 Conclusion

This work presents an empirical study on the perfor-
mance–perception relationship in monocular depth estimation
using RGB and thermal (THR) modalities on the MS2 dataset.
Through systematic quantitative and qualitative analyses, we
observe a consistent divergence between numerical accuracy
and visual realism. Specifically, the THR modality achieves
lower depth estimation errors and higher stability under ad-
verse illumination conditions such as rain or night, demon-
strating its robustness against environmental variations. How-
ever, the RGB modality consistently delivers more perceptu-
ally coherent depth maps, preserving edges, textures, and fine
details that are visually aligned with human depth perception.

These findings underscore that numerical superiority does
not necessarily imply perceptual fidelity, revealing an intrinsic
imbalance in current objective functions and evaluation met-
rics. The study highlights the need to jointly consider percep-
tual and numerical dimensions when assessing and optimizing
depth estimation models. In particular, future research should
explore perceptually informed loss functions and multimodal
fusion strategies that explicitly leverage the complementary
strengths of RGB and THR data. By integrating radiomet-
ric stability from thermal sensing with the rich semantic and
structural priors of RGB imagery, it may be possible to con-
struct depth estimation frameworks that achieve both quantita-
tive robustness and perceptual consistency across diverse en-
vironmental conditions.
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