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Abstract

Quasi-submodularity is a unified measurement to char-
acterize submodularity or approximate submodularity of
a set function. In this paper, we consider a variant of
Minimum Cardinality Cover named Minimum Cardinal-
ity Multiple Quasi-submodular Cover, which requires to
find the smallest subset of given ground set such that mul-
tiple quasi-submodular functions reach a maximum. We
design and analyze a greedy approximation algorithm for
Minimum Cardinality Multiple Quasi-submodular Cover.
As some applications of our results, we achieve a O(lnn)-
approximation algorithm for Minimum Resolving Re-
strained Dominating Set, and a O(ln δ)-approximation al-
gorithm for Minimum Dominating Set in multiplex net-
works, where n is the node number and δ is the maximum
node degree of the input graph.

Index Terms— Minimum cardinality cover, Submodular, Ap-
proximation algorithm, Dominating set

1 Introduction

Minimum Cardinality Cover(MCC for short) is a well-known
NP-hard combinatorial optimization problem. Given a ground
set U and a set function f :2U → R+ which is normalized
(f(∅) = 0) and non-decreasing (f(T ) ≥ f(R) whenever
T ⊆ R ⊆ U ), MCC is asked to find a smallest subset S ⊆
U such that f(S) = f(U), more formally,

min
S⊆U
{| S |: f(S) = f(U)}.

For any pair of T , R ⊆ U , the marginal gains of set R in
T is denoted by ∆Rf(T ) = f(R ∪ T ) − f(T ). Specially,
denote by ∆if (T ) = f (T ∪ {i}) − f (T ) the marginal gains
of singleton set {i} in T . The classical greedy algorithm(CGA
for short) is a basic method for MCC: starts from an empty set;
iteratively adds to the current solution set one element with the
maximum marginal gains until potential function f(·) reaches
the maximum.

Especially, suppose potential function f(·) satisfies sub-
modularity or approximate submodularity, then algorithm
CGA enjoys some provable approximation guarantees for

Algorithm 1 CGA

Input: A ground set U and potential function f :2U → R+

Output: A subset S ⊆ U such that f(S) = f(U)
1: S ← ∅;
2: while ∃u ∈ U such that ∆uf (S) > 0 do
3: u← argmaxu∈U\S∆uf (S);
4: S ← S ∪ {u};
5: end while
6: return S.

these variants of MCC. Now we introduce the submodularity
and two approximate submodularities.

(i): Submodularity [1, 2, 3]. The submodularity of f(·) is
that the marginal gains of joining an element to a set is not less
than that of joining an element to a superset. More formally,
for any T ⊆ R ⊆ U and any i ∈ U\R, f(·) satisfies

∆if(T ) ≥ ∆if(R).

(ii): Submodularity Ratio [4, 5]. The submodularity ratio
is a approximate submodularity which is used to characterize
how close a set function is to be submodular. More formally,
the submodularity ratio of f(·) is the largest scalar γ ∈(0,1]
such that for any T ⊆ R ⊆ U and any i ∈ U\R, f(·) satisfies

∆if(T ) ≥ γ ×∆if(R).

(iii): Submodularity Gap [5, 6]. The submodularity gap is
another approximate submodularity which is also used to char-
acterize how close a set function is to be submodular. More
formally, the submodularity gap of f is the smallest scalar
θ ∈[0,+∞) such that for any T ⊆ R ⊆ U and any i ∈ U\R,
f(·) satisfies

∆if(T ) ≥ ∆if(R)− θ.

Submodularity and approximate submodularity play an im-
portant role in combinatorial optimization, especially the Min-
imum Cardinality Cover. However, some combinatorial op-
timization problems require multiple submodular or approx-
imate submodular functions reach a maximum. These prob-
lems are usually NP-hard, which means it is unlikely to be
solved precisely in polynomial time unless P = NP . Greedy
approximation algorithm might be very popular to solve the
problem, because it enjoy low time complexity and thus can
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be suitable for big data, and particularly because it can give
solutions with guaranteed quality, which are close to the best
that could theoretically be obtained. The contributions of this
paper are as follows.

• Define a measurement which is called quasi-
submodularity to uniformly characterize submodularity
and some approximate submodularities.

• Design and analyze a greedy approximation algorithm for
Minimum Cardinality Multiple Quasi-submodular Cover.
It can be proved that our approximation ratio slightly gen-
eralizes some known ones.

• Achieve a O(lnn)-approximation algorithm for the mini-
mum resolving restrained dominating sets problem, and a
O(ln δ)-approximation algorithm for the minimum domi-
nating sets problem in multiplex networks, where n is the
node number and δ is the maximum node degree of the
input graph.

2 Preliminaries
First, we give a measurement which is called quasi-
submodularity to unified characterize submodularity and some
approximate submodularities.

Definition 1. (Quasi-submodularity). Given a ground set U
and a set function f :2U → R+, the quasi-submodularity is
binary parameters (λ, µ) such that for any T⊆ R⊆ U and any
i ∈ U\R,

∆if(T ) ≥ λ×∆if(R)− µ,

where λ ∈ (0, 1] and µ ∈ [0,+∞).

For Convenience, henceforth we say that a function f(·) is
(λ, µ)-submodular if its quasi-submodularity is (λ, µ). It is
easy to see that if f(·) satisfies (λ, µ)-submodularity, then f(·)
satisfies (λ′, µ′)-submodularity for any λ′ ∈ (0, λ] and µ′ ∈
[µ,+∞).
Remarks:
(i) (1, 0)-submodularity is the classic submodularity,
(ii) (λ, 0)-submodularity is called submodularity ratio of f(·)
if and only if λ is the largest scalar such that f(·) satisfies
(λ, 0)-submodularity,
(iii) (1, µ)-submodularity is called submodularity gap of f(·)
if and only if µ is the smallest scalar such that f(·) satisfies
(1, µ)-submodularity.

Next, we consider a variant of Minimum Cardinality Cover.
The variant requires multiple submodular or approximate sub-
modular functions reach a desirable fraction.

Definition 2. (Minimum Cardinality Multiple Quasi-
Submodular Cover). Given a ground set U and multiple set
functions f1, ..., fk:2U → R+, where fi is normalized, non-
decreasing and (λi, µi)-submodular for any i ∈ {1, 2, ..., k},
Minimum Cardinality Multiple Quasi-Submodular Cover is
asked to find a smallest subset S ⊆ U such that fi(S) = fi(U)
for any i ∈ {1, 2, ..., k}, more formally,

min
S⊆U
{| S |: fi(S) = fi(U), i ∈ {1, 2, ..., k}}.

Since that Minimum Cardinality Multiple Quasi-
submodular Cover generalizes the problem of covering
multiple submodular constraints [7] if (λk, µk)-submodularity
is submodularity for any i ∈ {1, 2, ..., k}, then Minimum Car-
dinality Multiple Quasi-submodular Cover is NP-hard, which
means it is unlikely to be solved precisely in polynomial time
unless P = NP . Our aim is to give a greedy approximation
algorithm with polynomial time.

3 Greedy approximation algorithm

For Minimum Cardinality Multiple Quasi-submodular Cover,
we give a solution with guaranteed quality by considering a
potential function f : 2U → R+ for any S ⊆ U , where

f(S) =

k∑
i=1

fi(S).

It is easy to see f(·) is normalized and non-decreasing
due to fi(·) is normalized and non-decreasing for any i ∈
{1, 2, ..., k}. Further, we give some properties of f(S) for any
S ⊆ U .

Lemma 1. The potential function f(·) satisfies
(i)(λ, µ)-submodularity, where λ = min{λ1, λ2, ..., λk} and
µ =

∑k
i=1 µi,

(ii) f(S) = f(U) if and only if S is a solution for Minimum
Cardinality Multiple Quasi-submodular Cover, and
(iii) f(S) < f(U) if and only if there exists a element u ∈
U − S and i ∈ {1, 2, ...k} such that ∆ufi(S) > 0.

Proof. (i)Since fi(·) is (λi, µi)-submodular for any i ∈
{1, 2, ..., k}, we have for any A ⊆ B ⊆ U and any u ∈ U −B

∆uf(A) =

k∑
i=1

∆ufi(A)

≥
k∑

i=1

(λi ×∆ufi(B)− µi)

> λ× (

k∑
i=1

∆ufi(B))− µ

= λ×∆uf(B)− µ,

where λ = min{λ1, λ2, ..., λk} and µ =
∑k

i=1 µi.
(ii)f(S) = f(U), namely, fi(S) = fi(U) for i ∈

{1, 2, ...., k} if and only if S is a solution for Minimum Cardi-
nality Multiple Quasi-submodular Cover.

(iii)f(S) < f(U), namely, there exist u ∈ U − S such
that ∆uf(S) > 0, which is equivalent to the existence of i ∈
{1, 2, ..., k} and u ∈ U − S such that ∆ufi(S) > 0.

Next, we prove that algorithm CGA yields a approximation
solution for Minimum Cardinality Multiple Quasi-submodular
Cover.
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Theorem 1. If f(·) is integer-valued, there exists a (1 +
λµ+ 1

µ lnα)-approximation solution yielded by CGA for find-
ing a subset S ⊆ U such that f(S) = f(U), where α =
maxu∈U f({u}).

Proof. Suppose that the greedy solution yielded by CGA is
S = {s1, s2, ..., sg}, where g is the cardinality of the greedy
solution and si is the element selected in the ith iteration of the
algorithm for i = 1, 2, ..., g. And suppose Si = {s1, s2, ..., si}
for i = 1, 2, ..., g and S0 = ∅. Similarly, we let O =
{o1, o2, ..., oopt} be an optimal solution where opt is its car-
dinality, and let Oj = {o1, o2, ..., oj} for j = 1, 2, ..., opt and
O0 = ∅.

From greedy rule, we have

si = arg max
u∈U\Si−1

∆uf(Si−1),

namely, for any i ∈ {0, 1, ..., g−1} and any j ∈ {1, 2, ..., opt},

f(Si+1)− f(Si) = ∆si+1
f(Si) ≥ ∆ojf(Si),

and thus we have

f(Si+1)− f(Si) ≥
1

opt

opt∑
j=1

∆ojf(Si).

Additionally, for any i ∈ {0, 1, ..., g}, we have

f(U)−f(Si) = f(Si∪Oopt)−f(Si) =

opt∑
j=1

∆ojf(Si∪Oj−1).

From lemma 1(i), we have

∆ojf(Si) ≥ λ×∆ojf(Si ∪Oj−1)− µ,

where λ = min{λ1, λ2, ..., λk} and µ =
∑k

i=1 µi. We im-
mediately establish the following recursive inequality for any
i ∈ {0, 1, ..., g − 1}

f(Si+1)− f(Si) ≥
λ

opt
(f(U)− f(Si)− µ× opt),

which implies

λ×(f(U)

opt
−µ) ≤ f({s1})−f(∅) ≤ ∆s1f(∅) = max

u∈U
f({u}).

Let ci−1 = λ×(f(U) − f(Si−1) − µ × opt) and α =
maxu∈U f({u}), we have

cg = −λ× µ× opt

and

c0 = λ×(f(U)−µ×opt) = λ×(f(U)

opt
−µ)×opt ≤ α×opt.

For any i ∈ {1, 2, ..., g}, another recursive inequality is estab-
lished as

ci−1 − ci = λ×∆sif(Si−1) ≥
λ× ci−1

opt
,

which implies

ci ≤ c0(1−
λ

opt
)i ≤ c0e

−λ×i
opt .

Note that since ci is decreasing with respect to i, there exists
x ∈ {1,2,...,g−1} such that for any η ∈ (0, α) we have cx
= (η − λ × µ) × opt. From cx to cg , cx will reduce from
(η − λ × µ) × opt to −λ × µ × opt with g − x elements are
selected by CGA. Otherwise, by assuming that f(·) is integer-
valued, cx reduces 1 at least when any element in U\Sx is
selected. Therefore, we have g ≤ η × opt + x from

opt× (η − λ× µ)− (g − x) ≥ −λ× µ× opt.

By cx ≤ c0e−
λ×x
opt , the relationship between x and opt can be

obtained as

x ≤ opt

λ
× ln

c0
cx

≤ opt

λ
× ln

α× opt

opt× (η − λ× µ)

≤ opt

λ
× ln

α

η − λ× µ
.

Hence,

g ≤ η × opt+ x ≤ opt× (η +
1

λ
ln

α

η − λ× µ
).

In order to get the lower bound of approximation ratio, we
consider function p(η) = η + 1

λ ln α
η−λ×µ is minimal at η =

1+λ×µ. Since η ∈(0, α), we can simplify the approximation
ratio to 1 + λµ+ 1

λ lnα.

We remark that Theorem 1 slightly generalizes some known
results. For Minimum Cardinality Submodular Cover, it is
easy to obtain from Theorem 1 the approximation ratio 1 +
lnα which is almost the same as H(α). Theorem 1 can also
directly derive an approximation ratio 1 + 1

λ lnα for Minimum
Cardinality Ratio-submodular Cover if (λ, 0)-submodularity is
submodularity ratio of f(·), and another approximation ratio 1
+ µ + lnα for Minimum Cardinality Gap-submodular Cover if
(1, µ)-submodularity is submodularity gap of f(·).

4 Application
In the section, we would like to generalize our results to Min-
imum Resolving Restrained Dominating Set and Minimum
Dominating Set in Multiplex Networks.

4.1 Minimum Resolving Restrained Dominat-
ing Set

Given a connected graph G = ⟨V,E⟩ with node set V =
{v1, v2, ..., vn} and edge set E. The order of G is given by
n = |V | and its size by m = |E|. For any u, v ∈ V , we denote
by N(v) the set of all neighbors of v, by dis(u, v) the short-
est distance of u, v in G. Next, we introduce some concepts
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including dominating set, resolving set and Minimum Resolv-
ing Restrained Dominating Set.

For any D ⊆ V and any node u ∈ V , u is dominated by D
if there exists a node v ∈ D such that v ∈ N(u). Any subset
D ⊆ V is called a dominating set if and only if any node in
V −D can be dominated by at least one node in D. In order
to formally describe the dominating set, we define a potential
function f1 : 2V → Z+ for any D ⊆ V , where

f1(D) = |{v|v ∈ V −D,N(v) ∩D ̸= ∅}|+ |D|. (1)

Obviously, f1(∅) = 0, f1(D) < n if and only if the existence
of v ∈ V − D such that N(v) ∩ D = ∅, namely, any subset
D ⊆ V is called a dominating set if and only if f1(D) =
f1(V ) = n.

For any D ⊆ V and any two distinct nodes u,w ∈ V , u
and w are resolved by D if there exists a node v ∈ D such
that dis(v, u) ̸= dis(v, w). Any subset D ⊆ V is called a
resolving set [8] if and only if any two distinct nodes in V can
be resolved by D. In order to formally describe the resolving
set, we construct a set V ′ = {(vi, vj)|vi ∈ V, vj ∈ V, i < j}
in polynomial time, let C((vi, vj)) = {v|v ∈ V, dis(v, vi) ̸=
dis(v, vj)} for any (vi, vj) ∈ V ′, and define a potential func-
tion f2 : 2V → Z+ for any D ⊆ V , where

f2(D) = |{(vi, vj)|(vi, vj) ∈ V ′, C((vi, vj))∩D ̸= ∅}|. (2)

Obviously, f2(∅) = 0, f2(D) < n(n+1)
2 if and only if the

existence of (vi, vj) ∈ V ′ such that C((vi, vj)) ∩ D = ∅,
namely, any subset D ⊆ V is called a resolving set if and only
if f2(D) = f2(V ) = n(n+1)

2 . It’s worth recalling that the
resolving set with smallest cardinality is called metric dimen-
sion [9] in G. Finding the metric dimension in a general graph
is NP-hard [10], which means it is unlikely to be solved pre-
cisely in polynomial time unless P = NP . At present, there
are two greedy approximation algorithms [8, 11] for finding
metric dimension, in which the greedy rule of Khuller-Greedy
[8] with (1 + 2 lnn)-approximation is equivalent to selecting
v ∈ V −D with maxv∈V−D ∆vf2(D) in each iteration.

The Minimum Resolving Restrained Dominating Set [12] is
asked to find a smallest subset D ⊆ V with smallest cardinal-
ity such that D is a dominating set and resolving set. More
formally,

min
D⊆V
{|D| : f1(D) = f1(V ), f2(D) = f2(V )}.

To the best of our knowledge, there is no approximation al-
gorithm to solve Minimum Resolving Restrained Dominating
Set so far. Our aim is to propose an approximation algorithm
by considering a potential function f : 2V → Z+ for any
D ⊆ V , where

f(D) = f1(D) + f2(D). (3)

Let us show some properties of f(D).

Lemma 2. The potential function f(·) satisfies
(i) f(·) is normalized, non-decreasing and (1, 0)-submodular,
(ii) f(D) = f(V ) if and only if D is a solution for Minimum

Resolving Restrained Dominating Set, and
(iii) f(D) < f(V ) if and only if there exists a node v ∈ V −D
such that ∆vf(D) > 0.

Proof. (i) From (1) and (2), f(∅) = 0 is clear. It is easy
to see that f(·) is non-decreasing due to |N(v) ∩ D| and
|C((vi, vj))∩D| are non-decreasing with respect to D for any
v ∈ V −D and any (vi, vj) ∈ V ′. For any A ⊆ B ⊆ V and
any x ∈ V −B, we have

∆xf1(A) = f1(A ∪ {x})− f1(A)

= |N [x]−A− {v|v ∈ V,N(v) ∩A ̸= ∅}|
≥ |N [x]−B − {v|v ∈ V,N(v) ∩B ̸= ∅}|
= ∆xf1(B)

and

∆xf2(A)

= f2(A ∪ {x})− f2(A)

= |C(x)− {(vi, vj)|(vi, vj) ∈ V ′, C((vi, vj)) ∩A = ∅}|
≥ |C(x)− {(vi, vj)|(vi, vj) ∈ V ′, C((vi, vj)) ∩B = ∅}|
= ∆xf2(B),

hence,
∆xf(A) = ∆xf1(A) + ∆xf2(A)

≥ ∆xf1(B) + ∆xf2(B)

= ∆xf(B).

(ii) f(D) = f(V ), namely, f1(D) = f1(V ) = n and
f2(D) = f2(V ) = n(n+1)

2 if and only if N(v) ∩ D ̸= ∅
for every v ∈ V − D and C((vi, vj)) ∩ D ̸= ∅ for every
(vi, vj) ∈ V ′ if and only if D is a solution for Minimum Re-
solving Restrained Dominating Set.

(iii) f(D) < f(V ), namely, f1(D) < n or f2(D) <
n(n+1)

2 if and only if the existence of v ∈ V − D such that
N(v)∩D = ∅ or (vi, vj) ∈ V ′ such that C((vi, vj))∩D = ∅,
which is equivalent to the existence of v ∈ V − D such that
∆vf(D) > 0.

Based on Lemma 2 and Theorem 1, it is easy to know algo-
rithm CGA yields a (1 + 2 ln(n+ 1))-approximation solution
for Minimum Resolving Restrained Dominating Set due to

max
v∈V

f({v}) ≤ max
v∈V

(f1({v})) + max
v∈V

f2({v})

= max
v∈V

(|N [v]|) + max
v∈V

(|C(v)|)

< n+ n2 < (n+ 1)2.

4.2 Minimum Dominating Set in Multiplex
Networks

Considering a multiplex network which is formed by k differ-
ent layers, i.e., G = (G1, ..., Gk), where every layer Gi =
(V,Ei) has a same set V of n nodes and a distinct set of
edges Ei. We denote by Ni(v) the set of all neighbors of v in
Gi = (V,Ei). In order to formally describe the dominating set
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in Gi = (V,Ei), we define a potential function fi : 2
V → Z+

for any D ⊆ V and any i ∈ {1, 2, ..., k}, where

fi(D) = |{v|v ∈ V −D,Ni(v) ∩D ̸= ∅}|+ |D|. (4)

Obviously, fi(∅) = 0, fi(D) < n if and only if the existence
of v ∈ V − D such that Ni(v) ∩ D = ∅, namely, any subset
D ⊆ V is called a dominating set in Gi = (V,Ei) if and
only if fi(D) = fi(V ) = n. The Minimum Dominating Set
in Multiplex Networks [13] is asked to find a smallest subset
D ⊆ V with smallest cardinality such that D is a dominating
set in every layer Gi = (V,Ei). More formally,

min
D⊆V
{|D| : fi(D) = fi(V ), i ∈ {1, 2, ..., k}}.

Even with k = 1, Minimum Dominating Set in Multiplex
Networks generalizes the well-known Minimum Dominating
Set. Minimum Dominating Set in Multiplex Networks is NP-
hard problem due to it can also be easily reduced to Minimum
Dominating Set. Some practical applications such as Mon-
itoring Epidemic in Multiplex Network [14], Early Detecting
and Controlling Epidemic in Multiplex Network [15] and Con-
structing Extractive Text Summarization [16] are usually mod-
eled as Minimum Dominating Set in Multiplex Networks.

Some heuristic algorithms [13, 17] for the Minimum Dom-
inating Set in Multiplex Networks have been proposed. Our
aim is to propose an approximation algorithm by considering
a potential function f : 2V → Z+ for any D ⊆ V , where

f(D) =

k∑
i=1

fi(D). (5)

Let us show some properties of f(D).

Lemma 3. The potential function f(·) satisfies
(i) f(·) is normalized, non-decreasing and (1, 0)-submodular,
(ii) f(D) = f(V ) if and only if D is a solution for Minimum
Dominating Set in Multiplex Networks, and
(iii) f(D) < f(V ) if and only if there exists a node v ∈ V −D
such that ∆vf(D) > 0.

Proof. (i) From (4), f(∅) = 0 is clear. It is easy to see that
f(·) is non-decreasing due to |Ni(v) ∩ D| is non-decreasing
with respect to D for any v ∈ V −D and any i ∈ {1, 2, ..., k}.
For any A ⊆ B ⊆ V and any x ∈ V −B, we have

∆xfi(A) = fi(A ∪ {x})− fi(A)

= |N [x]−A− {v|v ∈ V,N(v) ∩A ̸= ∅}|
≥ |N [x]−B − {v|v ∈ V,N(v) ∩B ̸= ∅}|
= ∆xfi(B),

hence,

∆xf(A) =

k∑
i=1

∆xfi(A)

≥
k∑

i=1

∆xfi(B)

= ∆xf(B).

(ii) f(D) = f(V ), namely, fi(D) = fi(V ) = n for any
i ∈ {1, 2, ..., k} if and only if Ni(v) ∩ D ̸= ∅ for every v ∈
V −D and any i ∈ {1, 2, ..., k} if and only if D is a solution
for Minimum Dominating Set in Multiplex Networks.

(iii) f(D) < f(V ), namely, the existence of i ∈
{1, 2, ..., k} such that fi(D) < n if and only if the existence
of v ∈ V −D and i ∈ {1, 2, ..., k} such that Ni(v) ∩D = ∅,
which is equivalent to the existence of v ∈ V − D such that
∆vf(D) > 0.

Based on Lemma 3 and Theorem 1, it is easy to know algo-
rithm CGA yields a (1+ln(k×δ+k))-approximation solution
for Minimum Dominating Set in Multiplex Networks due to

max
v∈V

f({v}) ≤
k∑

i=1

max
v∈V

fi({v})

=

k∑
i=1

max
v∈V

(|Ni[v]|)

=

k∑
i=1

(δi + 1)

< k × δ + k,

where δi is the maximum node degree of the graph Gi =
(V,Ei) and δ = max{δ1, δ2, ..., δk}.

5 Conclusion

In this paper, we have proposed a variant of Minimum Car-
dinality Cover named Minimum Cardinality Multiple Quasi-
submodular Cover and given a greedy approximation algo-
rithm for it by defining a quasi-submodular potential func-
tion. As some applications of our results, we directly give
(1 + 2 ln(n + 1))-approximation solution for Minimum Re-
solving Restrained Dominating Set and a (1+ ln(k× δ+ k))-
approximation solution for Minimum Dominating Set in Mul-
tiplex Networks, where n is node number and δ is the maxi-
mum node degree of the input graph.

In the future work, we would like to generalize our method
to some other related NP-hard problems to explore their
greedy approximation algorithms with better approximation
ratio or performance.
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