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Abstract

artificial intelligence has seen widespread adoption
across diverse domains, and its potential in smart ag-
ing warrants further exploration[11, 16, 9, 7]. Falls
are a leading cause of morbidity and mortality among
oli2024deeplder adults, with substantial social and eco-
nomic impact. Existing fall detection systems primar-
ily operate in a reactive manner, recognizing incidents
only after they occur. While useful, such approaches
do not prevent injury and often suffer from low adher-
ence or high false alarm rates. In this work, we pro-
pose a predictive framework for in-home fall risk assess-
ment that shifts the focus from post-event detection to
pre-event forecasting. Our system integrates multimodal
sensing—including wearable inertial measurement units
(IMUs), millimeter-wave radar, and pressure sensors—
with a temporal deep learning architecture trained via self-
supervised pretraining and personalized adaptation. By
analyzing gait instability, postural transitions, and near-
fall events as precursors, the model outputs both a contin-
uous risk score and a probability of falls within multiple
future horizons.

Extensive experiments on a naturalistic longitudinal
dataset and a public benchmark demonstrate that our ap-
proach achieves earlier and more reliable predictions than
rule-based, classical machine learning, and purely su-
pervised deep learning baselines. Compared to exist-
ing detectors, our system improves AUROC and lead-
time while reducing daily false alarms, offering action-
able early warnings. Importantly, attention-based inter-
pretability highlights clinically relevant precursors, en-
hancing trust and adoption in elder care. This work rep-
resents a step toward proactive, personalized, and privacy-
preserving fall prevention, supporting independent living
for the aging population.

Index Terms—Fall prediction, smart aging, multimodal sens-
ing, time-series analysis, self-supervised learning, elder care,
deep learning.

1 Introduction

Falls are one of the most severe threats to the health and in-
dependence of older adults. According to the World Health

Organization, nearly one third of adults aged over 65 expe-
rience at least one fall per year, and falls remain the leading
cause of injury-related hospitalization and death in this pop-
ulation. Beyond the immediate physical harm, fear of falling
contributes to reduced mobility, social isolation, and a dimin-
ished quality of life. With the rapid growth of the aging pop-
ulation worldwide, effective solutions for fall prevention and
timely intervention are urgently needed.

Artificial intelligence and sensing technologies have in-
creasingly been explored in related domains, ranging from
personalized pedometer and gait analysis with wearable
IMUs[2], to privacy-preserving healthcare infrastructures for
rehabilitation[3], and deep learning approaches for move-
ment and performance analysis in sports[4]. These advances
demonstrate the broader potential of Al-driven multimodal an-
alytics for capturing subtle biomechanical patterns, motivat-
ing their application in the context of fall risk monitoring and
smart aging.

Over the past decade, a large body of research has fo-
cused on fall detection, leveraging wearable sensors, cam-
eras, or environmental devices to recognize falls after they
occur[14, 1, 12]. While detection is valuable for emergency
response, it remains inherently reactive: injuries have already
taken place by the time an alarm is triggered. Furthermore,
practical deployment faces multiple challenges. Wearable so-
lutions require consistent adherence, which is often low among
frail individuals. Vision-based methods introduce privacy con-
cerns and are sensitive to occlusion and lighting. Threshold-
based or single-sensor systems often suffer from high false
alarm rates, undermining user trust and adoption[6, 15].

These limitations motivate a paradigm shift: moving from
detection to prediction[13, 8]. Rather than identifying falls
post hoc, the goal is to anticipate elevated risk before an inci-
dent occurs. Early warnings would allow caregivers to imple-
ment preventive measures such as physical therapy, mobility
aids, or environmental adjustments, potentially averting severe
outcomes. However, fall prediction is a considerably more
challenging task, requiring models that can extract subtle and
temporally extended precursors of instability from complex,
multimodal data.

In this paper, we introduce a predictive framework for in-
home fall risk assessment. Our approach integrates multi-
modal sensing, including wearable IMUs, radar, and pressure
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sensors, with a temporal deep learning model based on Trans-
former encoders. To overcome the scarcity of fall labels, we
incorporate self-supervised pretraining using masked model-
ing and contrastive objectives. To address inter-individual
variability, we employ lightweight personalization strategies
that adapt the model to each user’s daily patterns. The sys-
tem outputs both a continuous risk trajectory and binary event
probabilities for multiple horizons, providing interpretable and
actionable early warnings.

We validate our approach on a longitudinal in-home dataset
and a public benchmark. Results demonstrate that our model
improves AUROC, AUPRC, and prediction lead-time while
significantly reducing false alarms. Contributions of this work
are threefold: (i) a novel multimodal predictive framework
that shifts from fall detection to fall forecasting; (ii) a self-
supervised and personalized architecture for robust learning
under scarce and imbalanced labels; and (iii) extensive eval-
uation showing earlier and more reliable risk prediction with
interpretable insights. Together, these advances highlight the
potential of predictive fall monitoring as a cornerstone of smart
aging technologies.

2 Methods

2.1 Problem Formulation

Let P denote the set of study participants and M the set
of sensing modalities (e.g., wearable IMU, millimeter-wave
radar, pressure arrays, and ambient context sensors). For a
given participant p € P and modality m € M, we observe a
univariate or multivariate time series X, 15’”) (t) € R sampled
at time ¢. After synchronization and resampling (Section 2.5),
streams are aligned on a common timeline and concatenated
to yield a unified multivariate sequence

X,(t) = [XPO NP @) || - | XM (@)] € RP,

where D = )" d,,. We operate on sliding windows of length
W seconds, indexed by their right endpoint ¢; the model takes
as input X, ;_w . € REXP, where L is the number of resam-
pled frames in the window. The objective is to predict a con-
tinuous, well-calibrated fall risk score r,,(t) € [0, 1] reflecting
the likelihood of a fall or near-fall in a prospective horizon
[t,t + A], together with an event probability ,(¢, A) € [0, 1]
for the same horizon. We thus learn a mapping

(Tp(t)> gp(t7 A)) = f@(Xp,t7W:t7 Zp,t7W:t>> (1)
where Z,, ;_w.; denotes auxiliary behavioral descriptors de-
rived from X (Section ??). The binary supervision y, (¢, A) €
{0,1} indicates whether a clinically-relevant event (fall or
near-fall) occurs within [¢,¢ + A]. We consider multiple hori-
zons A € {Aq,Aq, Az} (e.g., 1h, 6h, 24h) to support both
imminent-warning and day-ahead risk stratification within a
unified formulation.

2.2 Cohort, Setting, and Sensing Modalities

Participants are enrolled under informed consent for longitu-
dinal, in-home monitoring. The sensing configuration bal-
ances fidelity, burden, and privacy by combining minimally
obtrusive wearables with contactless environmental sensors.
A waist- or wrist-worn IMU provides triaxial accelerometry
and gyroscopy at native rates of 50—-100 Hz, enabling fine-
grained gait and posture dynamics. One or more short-range
millimeter-wave radars are positioned to cover habitual activ-
ity zones (e.g., bedroom, bathroom, corridor); their micro-
Doppler returns and velocity fields capture whole-body and
limb-specific kinematics without collecting identifiable im-
agery. Pressure sensors are deployed as floor mats or bed mats
to record weight shifts, stance phases, and nocturnal postural
changes. Low-duty ambient context sensors, including Blue-
tooth or UWB beacons and door contacts, provide coarse lo-
cation and activity cues that enrich temporal context at negli-
gible privacy cost. All streams are buffered and processed on
an edge gateway situated in the home; raw audio and video are
not persisted or transmitted off-device.

2.3 Event Definitions and Labeling Strategy

The primary endpoint is a medically significant fall as reported
by the participant, caregiver, or clinical staff, time-stamped via
incident reports or phone follow-ups. Because falls are rare,
we expand supervision using near-fall proxies drawn from
high-jerk perturbations, corrective stepping, abrupt angular ve-
locity peaks, and radar-inferred loss-of-balance patterns that
do not culminate in ground impact. Formally, let £, be the set
of annotated events for participant p, where each event e € &,
has an onset time ¢, and a type label in {fall, near-fall}. For a
prediction window ending at time ¢, the binary target is defined
as

2

optionally weighting near-falls with a scalar « € (0, 1] in the
learning objective to reflect their lower severity while preserv-
ing their predictive value. To mitigate annotation jitter, we al-
low a tolerance ¢ (e.g., 2 min) around ¢, when linking events
to windows.

yp(t,A) = I(Fee & st t <te <t+A),

2.4 Data Acquisition and Synchronization

All devices publish time-stamped packets to the edge gateway
over low-latency links. Clock drift is bounded using network
time protocol synchronization at deployment and opportunis-
tic beacon-based re-alignment daily. Streams are resampled
to a common frequency fs (10 Hz unless stated otherwise) via
polyphase decimation or band-limited interpolation, depend-
ing on the native rate. We resolve inter-stream offsets by max-
imizing cross-correlation between modality-specific motion
energy envelopes over a short calibration procedure at instal-
lation and by maintaining a low-order affine correction there-
after. The output is a set of co-registered frames {X,,(¢)}E_,
per window.
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2.5 Preprocessing and Denoising

Preprocessing aims to suppress sensor noise while preserving
biomechanically salient dynamics. IMU signals are passed
through a zero-phase Butterworth low-pass filter with cutoff
f. adapted to gait cadence (typically f. € [10,15]Hz), af-
ter removing gravitational components by quaternion-based
orientation estimation or high-pass filtering when attitudes
are unavailable. Radar returns are converted into time—
frequency representations using a short-time Fourier transform
with Hamming windows, and stationary clutter is attenuated
through background subtraction and magnitude gating; we fur-
ther suppress spurious micro-Doppler streaks via median fil-
tering in the time—frequency plane. Pressure arrays are de-
noised by spatial median filters followed by row/column de-
trending to account for slow baseline drift. Ambient con-
text signals are encoded as piecewise-constant states and sub-
sequently one-hot or embedded as low-dimensional vectors.
All channels are standardized per participant using robust z-
scoring (median and interquartile range) to reduce inter-person
variability without distorting heavy-tailed motion distribu-
tions. Missing samples within a window are imputed using
zero-order hold if gaps are shorter than ¢ seconds, or masked
explicitly when longer, enabling the downstream model to re-
main well-posed under intermittent dropouts.

2.6 Segmentation and Windowing

Continuous streams are partitioned into overlapping windows
of length W with stride S (e.g., W € [60,300]s and S €
[10, 30] s). This choice captures sufficient context for estimat-
ing stability and postural control while enabling near-real-time
updates. For multi-horizon prediction, each window is associ-
ated with targets {y,(t,A;)}, as in (2). To avoid information
leakage in temporal evaluation, windows whose horizons over-
lap an event are assigned exclusively to either training or test-
ing depending on the event time relative to the split boundary.

2.7 Model Architecture

The predictive model fy is designed as a multimodal, tempo-
ral deep network that jointly exploits raw sensor streams and
handcrafted descriptors. Its design reflects three goals: (i) to
capture short- and long-range temporal dependencies that un-
derpin gait stability and pre-fall dynamics; (ii) to integrate het-
erogeneous modalities with complementary signal character-
istics; and (iii) to provide both discrete event likelihoods and
continuous risk trajectories.

Multimodal Encoders. Each sensing modality is first pro-
cessed by a dedicated encoder tailored to its signal struc-
ture. Wearable IMU sequences are passed through a stack
of one-dimensional temporal convolutional layers followed by
bidirectional LSTM layers, yielding embeddings that capture
both local fluctuations and recurrent dynamics. Radar time—
frequency spectrograms are encoded via a lightweight two-
dimensional CNN followed by a Transformer encoder, which
attends to salient micro-Doppler streaks and velocity bursts.

Pressure maps are projected through a spatial CNN with small
receptive fields and temporal pooling to summarize stance pat-
terns. Ambient context embeddings are produced by an em-
bedding layer followed by gated recurrent units. The outputs
are temporally aligned and projected into a common latent
space.

Cross-Modal Fusion. To exploit complementarities while
preserving modality-specific nuances, we employ a cross-
attention fusion module. Given modality-specific embeddings
(7

m—1. the fusion layer computes for each timestep

M
h, = Z Q)EM) W(m)hgm)’ agm) = softmax,, (thK(m)hgm)) ’

m=1

where ¢, is a shared query derived from the concatenation of
all modalities at ¢, K™ is a learned projection, and W (™)
is a modality-specific linear transform. This attention-based
scheme highlights whichever modality most strongly explains
instability at a given moment (e.g., radar for balance loss, IMU
for step variability).

Temporal Representation Learning. The fused sequence
{h,} X, is passed through a Transformer encoder with multi-
head self-attention to capture long-range dependencies and re-
peated instability motifs. Positional encodings ensure tem-
poral ordering is preserved. To handle windows with par-
tial dropouts, modality-dropout masks are concatenated to the
embeddings, allowing the Transformer to learn robustness to
missing channels.

Self-Supervised Pretraining. Before supervised training,
the encoders are pretrained on unlabeled data using two auxil-
iary objectives: (i) masked sequence modeling, in which ran-
domly masked segments of h, are reconstructed from context,
and (ii) temporal contrastive learning, in which neighboring
windows from the same subject are treated as positive pairs
and distant windows or different subjects as negatives. The
resulting loss,

['SSL = £mask + Accontrast;

encourages invariances that transfer to the rare event predic-
tion task.

Prediction Heads. From the temporal encoder’s output, we
derive two heads. The classification head applies global aver-
age pooling followed by a sigmoid unit to estimate ¢, (¢, A),
the probability of a fall/near-fall within the horizon A. The re-
gression head uses an attention-weighted pooling followed by
a linear layer to estimate the continuous risk score 7,(t). The
joint loss is

L=\ BCE(yp, f/p) + Ao MSE(TP, fp) 4+ X3 Lssr, 3)

with A1, Ao, A3 balancing classification, regression, and self-
supervised objectives.
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Personalization and Online Adaptation. Because gait and
balance characteristics vary widely across individuals, we im-
plement personalization strategies. During deployment, the
model undergoes lightweight subject-specific fine-tuning us-
ing a few days of data, updating only normalization parame-
ters and prediction heads. Online calibration is performed with
temperature scaling to ensure probability calibration for each
subject. In addition, drift detectors such as ADWIN monitor
distributional shifts; when triggered, the system either fine-
tunes on recent data or reverts to the population model.

2.8 Imbalanced Learning and Weak Labels

Falls are rare events, leading to severe class imbalance. We
address this with several strategies. First, near-falls are incor-
porated as weak positives, weighted by a@ < 1 in the loss to
reflect their lower severity yet predictive value. Second, focal
loss is applied within the classification head to emphasize hard
and minority examples. Third, pseudo-labeling with high-
confidence predictions augments the training set in a semi-
supervised fashion, gradually refining decision boundaries.

2.9 Training Protocol

We evaluate models under both leave-one-subject-out (LOSO)
and temporal hold-out protocols to test cross-person gener-
alization and longitudinal robustness. Windows are sampled
with stride S to balance temporal resolution and computational
cost. Optimization uses AdamW with a OneCycle learning
rate schedule and mixed precision. Data augmentation in-
cludes time warping, jittering, Gaussian noise injection, and
modality dropout. Multiple prediction horizons (A = 1h,
6h, 24 h) are learned in a multitask manner by adding sepa-
rate classification heads that share the encoder.

2.10 Inference and Alerting

At runtime, windows are streamed through the model in over-
lapping fashion, and risk scores are updated every .S seconds.
To mitigate false alarms, an alert is issued only if r,,(¢) > 7 for
k consecutive windows. Thresholds are context-aware, with
lower 7 in high-risk environments such as bathrooms or stair-
ways. Alerts are tiered: green for normal, yellow for mod-
erate risk prompting preventive advice, and red for imminent
risk that triggers caregiver notifications. This design integrates
predictive analytics into a clinically actionable framework.

2.11 Evaluation Metrics

We assess performance on multiple levels. Event-level metrics
include precision, recall, F1, AUROC, AUPRC, and mean pre-
diction lead-time at fixed recall. Calibration quality is quanti-
fied with Brier score and Expected Calibration Error. User-
level utility is measured as false alarms per day. Ablation
studies compare modality subsets, pretrained versus randomly
initialized encoders, and personalized versus generic models.
Statistical significance is evaluated with bootstrapped confi-
dence intervals and DeLong’s test for AUROC differences.

2.12

To enhance trust and adoption, attention heatmaps identify the
temporal regions driving high risk predictions, and SHAP val-
ues attribute contributions of handcrafted descriptors. Weekly
summaries provide clinicians with interpretable patterns such
as rising gait variability or increasing nocturnal instability. For
deployment, all processing runs on an edge gateway with fed-
erated learning to update shared weights. Differential privacy
ensures uploaded gradients are noise-perturbed, and model
compression enables execution on embedded NPUs with real-
time latency.

Explainability and Deployment

3 Experiments and Results

3.1 Datasets

To evaluate the proposed predictive fall risk framework, we
conduct experiments on two datasets.

In-house longitudinal dataset. All data were independently
and exclusively collected by the authors. We constructed a
continuous multimodal dataset. The sensing configuration
consisted of a waist-worn IMU (100,Hz), two ceiling-mounted
mmWave radars (20,Hz), and pressure mats installed near beds
and bathrooms (10,Hz). Ground-truth fall events (n = 22)
were annotated by caregivers and verified against formal in-
cident reports, while near-falls (n = 134) were identified
through manual inspection of radar sequences in conjunction
with caregiver logs.

3.2 Baselines
We compare our method against representative approaches:

* Threshold-based IMU detector: peak acceleration and
angular velocity rules with fixed thresholds, as in [?].

* Classical ML: handcrafted features from IMU signals
fed into Random Forests and SVMs.

¢ Deep CNN-LSTM: end-to-end supervised model trained
on raw IMU windows without self-supervision or multi-
modal fusion.

¢ Vision-based fall detector: 3D CNN trained on RGB
videos (available only in SisFall).

These baselines represent current paradigms: simple rules,
shallow ML, deep supervised learning, and vision-based meth-
ods.

3.3 [Evaluation Protocol
We employ two complementary validation strategies:

1. Leave-One-Subject-Out (LOSO): models trained on all
but one subject and evaluated on the held-out subject, ro-
tating across participants. This tests cross-subject gener-
alization.
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2. Temporal hold-out: for each subject, the first 70% of
time windows are used for training and the last 30% for
testing. This tests longitudinal robustness.

Prediction horizons A € {1h, 6h, 24h} are evaluated. We
report mean performance across subjects.

3.4 Maetrics

e Event-level: Precision, Recall, F1-score, AUROC, and
AUPRC.

» Lead-time: average early warning time (minutes) at 80%
recall.

* Calibration: Brier score and Expected Calibration Error
(ECE).

* User-level: false alarms per day.

3.5 Main Results

Table 1 summarizes results on the in-house dataset with A =
6h. Our method achieves the highest predictive performance
and the longest advance warning.

Table 1: Comparison of predictive fall risk models on in-house
dataset (A = 6h). Best results in bold.

Method AUROC AUPRC Lead-time (min) False alarms/day
Threshold IMU 0.61 0.24 12.3 54
Random Forest 0.68 0.32 18.7 4.8
CNN-LSTM 0.74 0.41 25.6 3.9
Ours (no SSL) 0.80 0.50 33.1 2.7
Ours (full) 0.86 0.59 41.5 1.9

Compared to the CNN-LSTM baseline, our model improves
AUROC by +12%, extends average lead-time by nearly 16
minutes, and halves daily false alarms.

3.6 Ablation Studies

We perform systematic ablations to isolate contributions:

Effect of multimodal fusion. Removing radar or pressure
channels reduces AUROC by 5-8%, confirming complemen-
tary benefits.

Effect of self-supervised pretraining. Training from
scratch lowers AUPRC by 9%, demonstrating improved
representation from masked modeling and contrastive
objectives.

Effect of personalization. Without subject-specific adapta-
tion, false alarms increase from 1.9 to 3.2 per day, highlighting
the value of lightweight fine-tuning.

Results are summarized in Table 2.

Table 2: Ablation experiments on in-house dataset (A = 6 h).

Variant AUROC AUPRC False alarms/day
Full model 0.86 0.59 1.9
- w/o radar 0.81 0.49 2.5
- w/o pressure 0.80 0.47 2.8
- w/o SSL 0.77 0.50 2.6
- w/o personalization 0.82 0.55 32

3.7 Summary

Overall, the proposed approach consistently outperforms rule-
based, classical, and purely supervised deep models. The com-
bination of multimodal sensing, self-supervised pretraining,
and personalization yields earlier and more reliable fall risk
predictions with fewer false alarms, supporting its practical
utility for in-home elder care.

4 Discussion

The results demonstrate that predictive modeling of fall risk
is feasible and beneficial when leveraging multimodal sens-
ing, self-supervised representation learning, and personaliza-
tion. Unlike conventional fall detection systems that react only
after an incident, our framework anticipates elevated risk hours
in advance, enabling timely interventions. This paradigm shift
from detection to prevention has important clinical and social
implications.

4.1 Clinical Significance

From a clinical perspective, the ability to forecast falls trans-
forms elder care from reactive to proactive. Caregivers can
introduce preventive measures such as mobility aids, physi-
cal therapy, or environmental adjustments before accidents oc-
cur. The tiered alerting scheme also helps reduce alarm fa-
tigue: by stratifying risk levels, caregivers receive fewer but
more meaningful notifications. Case studies revealed that in-
terpretable risk trajectories correlate with clinically recognized
precursors, such as gait instability and nocturnal imbalance,
thereby enhancing trust and adoption.

4.2 Human-AlI Interaction and User Adoption

Beyond technical performance, the effectiveness of predictive
fall monitoring systems also depends on how older adults and
caregivers perceive and interact with the technology. Prior re-
search in human-computer interaction has shown that users of-
ten treat computational systems as social actors [?]. Attribut-
ing human-like qualities such as reliability, warmth, or author-
ity to algorithmic outputs[5]. In the context of elder care, this
means that the presentation of risk alerts - whether they ap-
pear as neutral data points, empathetic messages, or authori-
tative advice’ - can substantially influence trust, compliance
and long-term adoption.
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Furthermore, predictive systems operate not only as med-
ical tools but also as social companions[17]. Risk notifica-
tions may generate parasocial dynamics: older adults may ex-
perience the system as a constant presence of a ’guardian’,
which can reduce anxiety but may also raise dependency or
surveillance concerns[10, ?]. Therefore, designing the inter-
face and communication strategies around transparency, reas-
surance, and respect for autonomy is critical.

Ultimately, the diffusion of such systems will hinge on
more than just clinical validation. From a communication and
marketing perspective, positioning fall prediction as part of a
broader “independent living” lifestyle—rather than a stigma-
tizing medical device—may improve uptake. Culturally adap-
tive messaging and user-centered onboarding can bridge the
gap between technical innovation and everyday acceptance,
ensuring that predictive monitoring integrates seamlessly into
both the social and domestic lives of aging individuals.

4.3 Future Directions

Future research will focus on three directions. First, inte-
grating additional modalities such as smart flooring or Wi-Fi
channel state information may enhance unobtrusive monitor-
ing. Second, reinforcement learning could be explored for
adaptive alert thresholds that minimize false positives while
ensuring safety. Third, deployment in clinical trials will allow
evaluation of downstream outcomes such as reduced hospital-
ization rates or improved quality of life. Beyond elder care,
the methodology may extend to rehabilitation monitoring and
chronic disease management where predictive risk stratifica-
tion is equally valuable.

5 Conclusion

We presented a predictive framework for in-home fall risk as-
sessment that advances beyond traditional detection systems.
By combining multimodal sensing, temporal deep learning
with self-supervised pretraining, and lightweight personaliza-
tion, our approach delivers earlier and more reliable forecasts
of fall events. Experiments on both naturalistic and pub-
lic datasets demonstrate improvements in AUROC, lead-time,
and false alarm rates compared to rule-based and purely super-
vised baselines. Importantly, the system provides interpretable
risk trajectories that align with clinical observations, fostering
trust and practical utility.

This work highlights the potential of moving from fall de-
tection to fall prediction in smart aging contexts. With con-
tinued validation and ethical deployment, predictive fall mon-
itoring may play a crucial role in enabling older adults to live
independently and safely at home.
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