
SemanticForge: Repository-Level Code Generation through
Semantic Knowledge Graphs and Constraint Satisfaction

Wuyang Zhang1∗, Chenkai Zhang1, Zhen Luo2, Jianming Ma2,
Wangming Yuan3, Chuqiao Gu4 and Chengwei Feng5

1Department of Elec.&Comp. Science, University of Massachusetts Amherst, Amherst, Massachusetts, United States
2Department of Computer Sys. Engineering, Northeastern University, Boston, Massachusetts, United States

3Department of Computer Science, George Mason University, Fairfax, Virginia, United States
4Department of Info. Networking Institude, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

5Department of Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

*Corresponding author: doggo@ieee.org

Abstract

Large language models (LLMs) have transformed soft-
ware development by enabling automated code genera-
tion, yet they frequently suffer from systematic errors that
limit practical deployment. We identify two critical fail-
ure modes: logical hallucination (incorrect control/data-
flow reasoning) and schematic hallucination (type mis-
matches, signature violations, and architectural inconsis-
tencies). These errors stem from the absence of explicit,
queryable representations of repository-wide semantics.

This paper presents SEMANTICFORGE, which in-
troduces four fundamental algorithmic advances for
semantically-aware code generation: (1) a novel auto-
matic reconciliation algorithm for dual static-dynamic
knowledge graphs, unifying compile-time and runtime
program semantics; (2) a neural approach that learns to
generate structured graph queries from natural language,
achieving 73% precision versus 51% for traditional re-
trieval; (3) a novel beam search algorithm with integrated
SMT solving, enabling real-time constraint verification
during generation rather than post-hoc validation; and
(4) an incremental maintenance algorithm that updates
knowledge graphs in O(|∆R| · logn) time while main-
taining semantic equivalence.

Our evaluation on REPOKG-50 (4,250 repository-level
tasks across 50 Python projects) demonstrates that these
algorithmic innovations yield substantial improvements:
49.8% Pass@1 (15.6% absolute improvement over base
Code-Llama-34B), 49.8% reduction in schematic hallu-
cination through SMT-guided generation, and 34.7% re-
duction in logical hallucination via dual graph analysis.
The system maintains sub-3s latency through incremental
algorithms while providing formal correctness guarantees
absent in existing approaches.

Beyond empirical gains, SEMANTICFORGE establishes
theoretical foundations for constraint-aware code genera-
tion and demonstrates that explicit semantic modeling can
dramatically improve automated programming tools with-
out sacrificing efficiency.

Index Terms— Code Generation, Knowledge Graphs, Con-

straint Satisfaction, Repository Analysis, Large Language
Models, Software Engineering

1 Introduction

Recent advances in large language models (LLMs) have ush-
ered in a new era of AI-assisted software development. Tools
such as GitHub Copilot, Code-Llama, and ChatGPT now draft
entire functions or files with a single prompt, reportedly accel-
erating developer productivity [7, 25, 3]. Despite this progress,
LLM-generated programs remain brittle in practice: generated
code often fails to compile, or worse, compiles but embeds
subtle semantic errors.

A careful inspection reveals two dominant failure modes.
First, logical hallucination arises when the model misreasons
about control or data flow—mistakes in reasoning such as iter-
ating over an incorrect collection, omitting necessary state mu-
tations, or producing code that violates expected runtime be-
havior. This class of errors concerns semantic execution logic
rather than syntax. Second, schematic hallucination mani-
fests as structural inconsistencies, including type mismatches,
incorrect argument ordering, missing parameters, or calls to
nonexistent functions. These errors arise from violating inter-
face or schema constraints of the repository or external APIs.
While logical and schematic hallucinations can co-occur, they
differ fundamentally in their root causes and required reme-
dies. Empirical studies report that even state-of-the-art mod-
els exhibit these errors in 20%–40% of generation attempts
[22, 27, 28].

Why do these hallucinations persist? Current generation
pipelines typically combine a parametric LM with retrieval-
augmented prompts. Retrieval surfaces the top-k textual snip-
pets using lexical or embedding similarity [4, 34]. While re-
trieval provides local context, it ignores repository-wide se-
mantics such as transitive call chains, shared global state,
or runtime object types. Likewise, encoder models that in-
gest static abstract syntax trees (ASTs) or control-flow graphs

1

Journal of Emerging Applied Artificial Intelligence (JEAAI)

(CFGs) focus on intra-function structure and do not persist
their analysis as a reusable knowledge base [9, 10]. Fi-
nally, repair-oriented approaches execute candidates against
unit tests to filter or refine code [13], but they require an or-
acle test suite and do not prevent the model from hallucinating
in the first place.

This work. We argue that high-quality generation demands
an explicit, queryable representation of whole-repository se-
mantics. To that end, we introduce SEMANTICFORGE, which
advances beyond system integration through four fundamental
algorithmic innovations:

1. Dual static-dynamic knowledge graphs: Unlike prior
work that uses either static analysis [16] or dynamic traces
[30] in isolation, we introduce a novel algorithm to auto-
matically reconcile static and dynamic program informa-
tion into a unified graph representation. Our reconciliation
algorithm provably converges to the ground-truth program
dependence graph as test coverage increases (Theorem 4).

2. Neural query language generation: While existing sys-
tems use fixed retrieval strategies (keyword matching or
embedding similarity), we present a learned approach to
generate structured graph queries from natural language.
Our REINFORCE-based algorithm with graph-aware re-
wards achieves 73% precision in context selection versus
51% for traditional retrieval.

3. SMT-integrated beam search: Prior constraint-aware sys-
tems [20] verify code after generation. We introduce a
novel algorithm that integrates an SMT solver directly into
beam search, enabling real-time constraint verification dur-
ing generation. This eliminates 89% of schematic errors
(type mismatches, signature violations, and visibility er-
rors) with only 8.3% latency overhead through our incre-
mental solving strategy.

4. Incremental maintenance with optimality guarantees:
Existing knowledge graph systems require full recompu-
tation on code changes. We present an incremental up-
date algorithm with formal optimality guarantees, achiev-
ingO(|∆R|·log n) complexity while maintaining semantic
equivalence to full reconstruction (Theorem 3).

Contributions. Concretely, this paper makes the following
contributions:

• We present the first end-to-end framework that unifies
repository-level KG construction, neural query planning,
and constraint-aware decoding for code generation.

• We introduce a dual static–dynamic graph representation
and show that it reduces logical hallucination by 31% on
a benchmark of 50 Python repositories.

• We propose a schematic-constraint decoding algorithm that
eliminates 52% of signature/type errors while adding negli-
gible decoding overhead.

• We release REPOKG-50, a curated corpus with aligned
{static, dynamic} graphs and oracle implementations, fos-
tering further research.

Paper organization. Section 2 reviews related work. Sec-
tion 3 formalizes the problem and hallucination taxonomy.
Section 4 provides methodology overview. Sections 5–8 detail
our four-stage architecture. Section 9 describes experimental
setup, Section 10 presents results, Section 11 discusses limita-
tions, and Section 12 concludes with future directions.

2 Related Work

Our work builds on substantial progress in neural code gener-
ation while addressing fundamental limitations in repository-
scale synthesis. We organize related work into three key areas
that inform SEMANTICFORGE’s design.

2.1 Neural Code Generation

Transformer-based language models have revolutionized auto-
mated code synthesis. Early work with GPT-based models [3]
demonstrated strong performance on isolated function gener-
ation tasks, leading to practical systems like GitHub Copilot
[7] and specialized models like CodeLlama [18]. These ap-
proaches excel at pattern completion and syntactic correctness
but struggle with repository-wide semantic consistency.

Recent advances have focused on incorporating structural
information into generation models. GraphCodeBERT [9] and
UniXcoder [10] encode data flow graphs and AST structures,
improving understanding of local code relationships. How-
ever, these models still operate at the function or file level with-
out persistent semantic representations of entire repositories.

2.2 Repository-Level Code Understanding

Traditional code generation models struggle with repository-
scale tasks that require understanding cross-file dependencies
and architectural constraints [6, 35]. Recent work has begun
addressing these challenges through three primary paradigms:
retrieval-augmented generation, agent-based iterative refine-
ment, and planning-based decomposition.

Retrieval-Augmented Approaches. RAG methods like
CodeRetriever [14] and RepoCoder [35] use embedding sim-
ilarity to identify relevant code snippets for generation con-
text. Advanced systems like RAG-Code [26] employ dense
embeddings with sophisticated reranking mechanisms. While
effective for local dependencies, these approaches fundamen-
tally rely on surface-level similarity and miss transitive rela-
tionships, type constraints, and architectural patterns that span
multiple modules. Our knowledge graph approach provides
explicit semantic relationships that pure retrieval cannot cap-
ture.

2

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Agent-Based Iterative Systems. Recent systems like SWE-
agent [34] and CodeAgent [29] employ autonomous agents
that iteratively refine solutions through environmental feed-
back, test execution, and error correction. These approaches
can handle complex multi-step tasks and adapt to unexpected
challenges through exploration. However, they suffer from
high computational costs (often requiring 10-50 iterations per
task), unpredictable latency, and lack of semantic guarantees.
In contrast, SEMANTICFORGE’s constraint-aware generation
often produces correct solutions in a single pass while provid-
ing formal correctness guarantees.

Planning-Based Decomposition. Planning systems like
CodePlan [24] decompose complex repository tasks into se-
quences of localized edits, enabling systematic handling of
multi-file modifications. While these approaches provide bet-
ter task organization than monolithic generation, they typically
lack the semantic consistency guarantees needed to prevent
constraint violations across edit boundaries. Our neural query
planner provides similar decomposition benefits but operates
at the semantic level, ensuring global consistency through con-
straint satisfaction.

2.3 Constraint-Aware Code Generation

Recent work has begun exploring constraint satisfaction in
neural code generation. TypeT5 [31] incorporates type in-
formation during fine-tuning to improve type correctness.
CODEGEN-MONO [21] specializes models for specific pro-
gramming languages to reduce basic syntactic errors.

More closely related to our approach, LEVER [20] employs
static analysis to verify generated code against basic type con-
straints. However, these approaches apply constraints as post-
processing filters rather than integrating verification into the
generation process itself. Our SMT-guided beam search pro-
vides stronger guarantees by ensuring constraint satisfaction
throughout decoding.

2.4 Knowledge Graphs for Code Understand-
ing

Knowledge graphs have shown promise for representing pro-
gram semantics. CodeKG [16] constructs knowledge graphs
from documentation and API references for improved code
search, while ProgramKG [30] builds graphs from execution
traces for debugging applications.

Our work differs significantly by constructing comprehen-
sive repository-scale knowledge graphs that integrate both
static analysis and dynamic execution information. Unlike
previous approaches that focus on specific applications, SE-
MANTICFORGE uses knowledge graphs as the central repre-
sentation for guiding neural code generation through explicit
semantic reasoning.

2.5 Positioning of SemanticForge
SEMANTICFORGE advances the state-of-the-art through four
key innovations that address fundamental limitations across all
existing paradigms. Table 1 provides quantitative comparisons
demonstrating these advantages.

Explicit Semantic Representation: Unlike RAG meth-
ods that rely on implicit embeddings or agent-based systems
that learn through trial-and-error, we construct comprehensive
knowledge graphs that explicitly capture repository-wide se-
mantics. This enables reasoning about transitive dependen-
cies, type propagation, and architectural constraints that are
invisible to surface-level similarity matching or iterative explo-
ration. Our approach reduces logical hallucination by 31.8%
compared to RAG-Code (from 36.2% to 23.1%).

Single-Pass Constraint-Guided Generation: While
agent-based systems require multiple expensive iterations
and planning approaches often violate constraints across edit
boundaries, our SMT-guided beam search integrates constraint
satisfaction directly into generation. As shown in Table 1,
SEMANTICFORGE achieves 2.4s average latency (single pass)
compared to CodePlan’s 5.7s. Agent-based systems like SWE-
agent typically require 10-50 iterations [34], suggesting sig-
nificantly higher latency. Our constraint enforcement reduces
schematic hallucination by 52.2% compared to the best base-
line.

Learned Context Selection: Traditional retrieval uses fixed
similarity metrics, while agents explore contexts randomly.
Our neural query planner learns to identify task-relevant se-
mantic relationships, achieving 73% precision in context se-
lection (Section 10) compared to 51% for keyword-based re-
trieval. This targeted selection contributes to our 2.4× faster
generation compared to planning-based approaches.

Dual Static-Dynamic Analysis: Previous approaches focus
primarily on static program structure or rely on runtime feed-
back loops. Our framework uniquely combines static analysis
with dynamic execution traces in a unified representation, pro-
viding more complete semantic understanding than either ap-
proach alone. Dynamic augmentation alone contributes 7.3%
improvement in Pass@1 and 12.4% reduction in logical hallu-
cination (Section 10.2).

Comparative Advantages: Based on our empirical evalu-
ation:

• vs. Agent-based systems: Deterministic single-pass gen-
eration (2.4s) vs. iterative refinement (10-50 iterations
reported for SWE-agent [34]), formal constraint guaran-
tees eliminating 89% of type errors, significantly reduced
computational cost

• vs. Planning approaches: 2.4× faster generation (2.4s
vs. 5.7s for CodePlan), 52.2% fewer schematic errors
through integrated constraint checking, global semantic
consistency through knowledge graphs

• vs. RAG methods: 24.2% higher Pass@1 (49.8% vs.
40.1%), 52.3% reduction in schematic hallucination, ex-
plicit architectural understanding through graph represen-
tation

3

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 1: Quantitative comparison of SEMANTICFORGE against contemporary repository-level approaches from our experimen-
tal evaluation.

System Pass@1 Latency SHR LHR
(%) (sec) (%) (%)

RAG-Code 40.1 2.9 30.8 36.2
CodePlan 42.3 5.7 31.5 33.8

SEMANTICFORGE 49.8 2.4 14.7 23.1

Improvement vs. best +17.7% -17.2% -52.2% -31.8%

Computational Cost Analysis. Our detailed overhead anal-
ysis (Section 10.8) reveals that SEMANTICFORGE’s 47.1%
overhead over base Code-Llama is offset by the elimination of
iterative refinement. For a typical task, agent-based systems
consume 10-50× more computational resources due to re-
peated generation attempts. With measured energy consump-
tion of 187J per task, SEMANTICFORGE achieves 23% net
energy savings when accounting for reduced debugging itera-
tions from higher Pass@1 rates. The system scales efficiently
to repositories up to 500K lines of code with sub-linear query
complexity (O(n0.73)), making it practical for real-world de-
ployment.

Comparison Limitations. We acknowledge that direct
comparisons with agent-based systems are challenging due to
different evaluation setups and the lack of standardized bench-
marks. While we compare against systems evaluated on our
benchmark, agent-based approaches like SWE-agent were not
included in our experimental evaluation due to different task
formulations and evaluation metrics. Agent-based approaches
may excel at exploratory tasks requiring extensive trial-and-
error, while SEMANTICFORGE is optimized for well-defined
repository integration tasks. Future work should establish uni-
fied benchmarks enabling more precise quantitative compar-
isons across different paradigms.

These contributions enable SEMANTICFORGE to achieve
substantial improvements in repository-level code generation
while maintaining practical scalability and deterministic per-
formance for real-world deployment.

3 Problem Definition and Formaliza-
tion

This section formalizes the repository-level code generation
problem and provides precise definitions of the hallucination
phenomena that motivate our approach. We establish the math-
ematical framework that underpins our solution and analyze
the computational complexity of the problem space.

3.1 Repository-Level Code Generation
We define repository-level code generation as the task of syn-
thesizing code patches that integrate seamlessly with existing

codebases while respecting semantic constraints and architec-
tural invariants [6, 35]. Unlike isolated code generation, this
problem requires understanding transitive dependencies, type
propagation, and global consistency constraints that span mul-
tiple files and modules.

Formal Problem Statement. Given a repository R =
{f1, f2, . . . , fn} consisting of source files, a natural language
instruction u, and an optional test suite T , the goal is to syn-
thesize a code patch ∆R such that the updated repository
R′ = R∪∆R satisfies:

1. Functional Correctness: ∀t ∈ T : execute(t,R′) =
PASS

2. Semantic Consistency: compile(R′) = SUCCESS ∧
typecheck(R′) = SUCCESS

3. Behavioral Intent: satisfies(R′, u) = TRUE

4. Architectural Compliance: ∀c ∈ Carch :
violates(R′, c) = FALSE

where Carch represents the set of architectural constraints de-
rived from the repository’s design patterns and conventions.

3.2 Hallucination Taxonomy
We formally categorize the systematic errors exhibited by cur-
rent LLM-based code generation systems into two primary
classes, each requiring distinct mitigation strategies.

Logical Hallucination. We define logical hallucination as
errors in program semantics that lead to functionally incorrect
code despite syntactic validity. Formally, a generated code se-
quence y exhibits logical hallucination if:

compile(y) = SUCCESS (1)
∧ ∃t ∈ T : execute(t, y) ̸= expected(t)

Common manifestations include:

• Control Flow Errors: Incorrect loop bounds, missing
conditionals, wrong branching logic

• Data Flow Errors: Operating on wrong variables, incor-
rect data transformations, missing state updates

4

Journal of Emerging Applied Artificial Intelligence (JEAAI)

• API Misuse: Calling methods in wrong order, ignoring
return values, improper error handling

Example: Consider implementing a cache eviction policy:

1 # Instruction: "Remove oldest entries when
cache is full"

2 # Incorrect (Logical Hallucination):
3 def evict_if_full(self):
4 if len(self.cache) >= self.max_size:
5 # Wrong: removes newest instead of

oldest
6 self.cache.pop(list(self.cache.keys()

)[-1])
7

8 # Correct:
9 def evict_if_full(self):

10 if len(self.cache) >= self.max_size:
11 oldest_key = next(iter(self.cache))
12 self.cache.pop(oldest_key)

Schematic Hallucination. We define schematic hallucina-
tion as violations of type systems, function signatures, or struc-
tural constraints that prevent code from compiling or integrat-
ing correctly. Formally:

schematic hallucination(y,G) = |{c ∈ C(G) :
violates(y, c)}| > 0 (2)

where C(G) is the set of constraints extracted from reposi-
tory knowledge graph G.

Categories include:

• Type Mismatches: Passing wrong types to functions, in-
compatible return types

• Signature Violations: Wrong parameter counts, missing
required arguments

• Scope Violations: Accessing private members, using un-
defined variables

• Import Errors: Missing imports, circular dependencies

Example: Consider adding authentication to an API end-
point:

1 # Instruction: "Add authentication check to
login endpoint"

2 # Incorrect (Schematic Hallucination):
3 @app.route(’/login’, methods=[’POST’])
4 def login():
5 # Wrong: authenticate_user takes (

username, password)
6 # but only username is provided
7 if authenticate_user(request.json.get(’

username’)):
8 return {"status": "success"}
9 return {"status": "failed"}

10

11 # Correct:

12 @app.route(’/login’, methods=[’POST’])
13 def login():
14 username = request.json.get(’username’)
15 password = request.json.get(’password’)
16 if authenticate_user(username, password):
17 return {"status": "success"}
18 return {"status": "failed"}

3.3 Complexity Analysis
We analyze the computational complexity of repository-level
code generation to establish theoretical bounds and justify our
architectural choices.

Context Selection Complexity. For a repository with n
code entities and m dependency relationships, the naive ap-
proach of considering all possible context subsets has com-
plexity O(2n). Our neural query planner reduces this to
O(n log n) through learned heuristics and graph-based prun-
ing.

Constraint Verification Complexity. Given k constraints
extracted from the knowledge graph, naive constraint check-
ing requires O(k · |y|) time for a generated sequence y. Our
incremental SMT-based approach achievesO(k+ |y|) through
state caching and incremental solving.

Graph Maintenance Complexity. For a code change ∆R
affecting |∆R| entities in a repository of size n, full re-
analysis requires O(n2) time due to cross-reference resolu-
tion. Our incremental maintenance achieves O(|∆R| · d ·
log n) through dependency tracking and selective recomputa-
tion, where d is the maximum dependency depth.

3.4 Problem Hardness and Approximation
We establish the theoretical hardness of optimal repository-
level code generation and justify our approximation strategies.

Theorem 1 (Problem Hardness). The optimal repository-
level code generation problem, defined as finding the
minimum-cost code patch satisfying all constraints, is NP-
hard. We define the cost function as:

Cost(∆R) = α · de(∆R) (3)
+ β · pc(∆R) + γ · da(∆R)

where de is the patch edit distance (number of lines changed),
pc is the constraint violation penalty, da is the architectural
deviation score, and α, β, γ are weighting coefficients.

Proof Sketch: We reduce from the Boolean Satisfiabil-
ity Problem (SAT). Given a SAT instance with variables
x1, . . . , xn and clauses c1, . . . , cm, we construct a repository
where each variable corresponds to a code entity and each
clause corresponds to a constraint. Finding a satisfying as-
signment is equivalent to finding a valid code patch.

This hardness result motivates our use of approximation al-
gorithms and heuristic search strategies. Our neural query

5

Journal of Emerging Applied Artificial Intelligence (JEAAI)

planner provides a polynomial-time approximation, while the
SMT-based decoder ensures constraint satisfaction within the
feasible search space.

Approximation Quality. We define the approximation ratio
of our approach as:

ρ =
E[Cost(∆RSF)]

E[Cost(∆R∗)]
(4)

where ∆RSF is the solution produced by SEMANTICFORGE
and ∆R∗ is the optimal solution.

Empirical analysis on our benchmark suite shows ρ ≤ 1.3
for most repository types, indicating that our solutions are
within 30% of optimal on average.

3.5 Solution Requirements
Based on the problem analysis, we identify four key require-
ments that any effective solution must address:

1. Semantic Awareness: The system must understand
repository-wide semantics, not just local patterns

2. Constraint Enforcement: Hard constraints must be sat-
isfied, not merely approximated

3. Scalability: The approach must handle repositories with
millions of lines of code

4. Adaptability: The system must evolve with the reposi-
tory to maintain accuracy

These requirements directly motivate the four-stage ar-
chitecture of SEMANTICFORGE, where each component ad-
dresses specific aspects of the problem complexity while main-
taining overall system coherence.

4 Methodology
Our aim is to inject explicit, executable semantics into the
code generation loop. By executable semantics, we mean a
repository-wide, queryable representation that links code en-
tities to their runtime behaviors and enforceable constraints,
allowing code generation to be guided by verifiable seman-
tics rather than pattern matching. SEMANTICFORGE there-
fore proceeds in two macro stages—graph construction and
graph-aware generation—underpinned by continual mainte-
nance. This section provides a comprehensive overview of our
four-stage architecture and establishes the mathematical foun-
dations for each component.

4.1 Framework Overview
Given a repository snapshotR = {f1, . . . , f|R|} consisting of
source files and accompanying tests, and a natural language
instruction u, our objective is to synthesize a code patch ∆R
such that the updated repository R′ = R ∪ ∆R satisfies the

four requirements established in Section 3: functional correct-
ness, semantic consistency, behavioral intent, and architectural
compliance.

Figure 1 illustrates the complete SEMANTICFORGE
pipeline, showing how each stage addresses specific aspects
of the repository-level code generation problem:

Stage I: Repository Knowledge Graph Construction
(section 5). We construct a heterogeneous knowledge
graph G = ⟨V, E⟩ that explicitly encodes repository
semantics through static analysis and dynamic trace col-
lection. Each node v ∈ V represents a code entity
with type τ(v) ∈ {FUNC, CLASS, VAR, FILE, TEST, API},
while edges e = (vi, ρ, vj) ∈ E capture relationships ρ ∈
{CALLS, DEFINES, IMPORTS,MUTATES, RETURNS, INSTANCEOF}.

Stage II: Neural Query Planner (section 6). A neural net-
work πϕ transforms natural language instructions into graph
queries that extract task-relevant context. Given instruction u,
the planner generates query q = πϕ(u) which retrieves sub-
graph Gu = Exec(q,G). The planner is trained via REIN-
FORCE [32] to maximize downstream code generation qual-
ity:

J (ϕ) = E(u,y) [R(y,Gu)] (5)

where R measures functional correctness and constraint satis-
faction.

Stage III: Schematic-Constraint Decoder (section 7). We
formulate code generation as constrained optimization, en-
suring generated code satisfies semantic constraints extracted
from Gu:

ŷ = argmax
y

logPθ(y | u,Gu) (6)

s.t. C(y,Gu) = ∅

where C returns violated constraints. We solve this through
SMT-guided beam search [5] that prunes constraint-violating
paths during generation.

Stage IV: Continual Maintenance Agent (section 8). An
autonomous agent monitors repository changes and incremen-
tally updates the knowledge graph to maintain semantic fi-
delity. The agent achieves O(|∆R| · d · log n) update com-
plexity through dependency tracking and selective recomputa-
tion, where |∆R| is the number of modified entities, d is the
maximum dependency depth, and n is the repository size.

4.2 Key Innovations Beyond Integration

While SEMANTICFORGE integrates multiple techniques, each
component introduces fundamental algorithmic innovations
that advance the state-of-the-art independently. Table 2 sum-
marizes these contributions.

6

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Figure 1: Complete architecture of the SEMANTICFORGE system. The pipeline consists of four integrated stages: (I) Reposi-
tory Knowledge Graph Construction combining static analysis and dynamic traces, (II) Neural Query Planner that transforms
instructions into graph queries, (III) Schematic-Constraint Decoder ensuring semantic correctness, and (IV) Continual Main-
tenance Agent for incremental updates. Each stage addresses specific aspects of the repository-level code generation problem
while maintaining overall system coherence.

Table 2: Novel contributions of each SEMANTICFORGE component compared to prior work. Each row highlights a specific
algorithmic or theoretical advance beyond system integration.

Component Prior Art Limitation Our Novel Contribution Key Innovation

Knowledge Graph Static analysis only
(CodeKG) or dynamic
only (ProgramKG)

Dual static-dynamic graph
with automatic reconciliation
algorithm

Unified representa-
tion capturing both
compile-time and run-
time semantics

Query Planner Fixed retrieval strategies
(BM25, dense embeddings)

Learned query language gen-
eration via REINFORCE with
graph-aware rewards

First neural planner for
structured code queries

Constraint Decoder Post-hoc verification
(LEVER) or syntax-only
constraints

SMT-integrated beam search
with incremental constraint
solving

Real-time semantic ver-
ification during genera-
tion

Maintenance Full recomputation or man-
ual updates

Provably optimal incremental
algorithm with O(|∆R|) com-
plexity

Theoretical guarantee of
consistency with mini-
mal computation

4.3 Design Rationale

Our architecture addresses the fundamental limitations of cur-
rent code generation systems through four key design princi-
ples:

Explicit Semantic Representation. Rather than relying on
implicit pattern matching, we construct an explicit knowledge
graph that captures repository semantics. This enables rea-
soning about transitive dependencies, type propagation, and
architectural constraints that are invisible to embedding-based
approaches.

Learned Context Selection. Instead of using fixed retrieval
strategies, we learn a neural query planner that adapts to repos-
itory structure and task requirements. This allows the system

to identify relevant context that spans multiple modules while
avoiding information overload.

Constraint-Aware Generation. We embed formal verifica-
tion directly into the generation process, ensuring that out-
put satisfies semantic constraints before emission. This elimi-
nates schematic hallucination at the source rather than requir-
ing post-hoc correction.

Continual Adaptation. Our maintenance agent ensures the
system evolves with the repository, maintaining accuracy as
code changes over time. This addresses the temporal mismatch
between training data and deployment environments.

7

Journal of Emerging Applied Artificial Intelligence (JEAAI)

4.4 Mathematical Foundations

We establish the mathematical framework that underlies each
system component:

Knowledge Graph Formalization. The repository knowl-
edge graph G approximates the ground-truth program depen-
dence graph G∗ by minimizing structural Hamming distance:

dSH(G,G∗) = |V△V∗| (7)
+ |E△E∗|

where △ denotes symmetric difference. Our dual static-
dynamic extraction strategy provides complementary approxi-
mations that converge to G∗ as test coverage increases.

Query Planning Optimization. The planner parameters ϕ
are optimized to maximize expected code generation reward:

ϕ∗ = argmax
ϕ

E(u,y)∼D (8)

[R (y,Exec(πϕ(u),G))]

We use REINFORCE [32] with synthetic data warm-start and
contrastive learning on static-dynamic graph pairs.

Constraint Satisfaction. Our decoder enforces constraints
C extracted from the knowledge graph. Constraints are en-
coded as SMT formulas [5] that can be checked incrementally
during beam search. The constraint set includes:

• Type constraints: type(e) ⊆ expected type(e)

• Signature constraints: arity(f) = |args(f)|

• Visibility constraints: accessible(v, scope)

• Architectural constraints: satisfies(pattern, design rule)

This mathematical framework provides theoretical ground-
ing for our empirical results and enables principled analysis of
system behavior across different repository types and scales.

Comparison with Traditional Approaches. To illustrate
our innovation, consider a task requiring modification of a
data processing pipeline. A traditional RAG approach might
retrieve a localized code snippet containing the target func-
tion but miss cross-file dependencies or hidden imports, caus-
ing the generated patch to fail compilation. In contrast,
our knowledge graph approach resolves the full dependency
structure—including transitive imports, type constraints from
parent classes, and API contracts from external libraries—
and enforces these constraints during generation, ensuring the
patch integrates correctly without manual debugging. This
fundamental difference between surface-level retrieval and se-
mantic understanding drives our significant performance im-
provements.

5 Repository Knowledge Graph Con-
struction

Accurate code generation requires comprehensive understand-
ing of repository semantics—not just what the code says (static
structure), but also what it does (runtime behavior). Tradi-
tional knowledge graph approaches rely exclusively on either
static analysis [16] or dynamic execution traces [30], each cap-
turing only partial semantics. Static analysis provides com-
plete coverage but cannot resolve polymorphic behavior or
runtime type information. Dynamic analysis captures concrete
execution patterns but depends on test coverage and may miss
unexecuted paths.

This section presents the first algorithm to automatically
reconcile static analysis and dynamic execution traces into
a unified knowledge graph. Our dual representation cap-
tures both compile-time structure and runtime behavior, re-
ducing logical hallucination by 31% compared to static-only
approaches. The key innovation lies in an automatic recon-
ciliation algorithm that merges complementary information
sources while maintaining consistency guarantees.

5.1 Problem Formulation
We formalize the knowledge graph construction problem as
approximating the ground-truth program dependence graph G∗
by minimizing:

dSH(G,G∗) = |V△V∗|+ |E△E∗| (9)

where G = ⟨V, E⟩ is our constructed graph and △ denotes
symmetric difference.

5.2 Unified Graph Schema
Our schema captures program semantics through typed nodes
v ∈ V with τ(v) ∈ {FUNC, CLASS, VAR, FILE, TEST, API}
and labeled edges e = (vi, ρ, vj) ∈ E where ρ ∈
{CALLS, DEFINES, IMPORTS,MUTATES, RETURNS, INSTANCEOF}.
Nodes carry semantic attributes including type signatures,
scope constraints, and docstring embeddings that enable
constraint extraction during generation.

5.3 Dual Analysis Algorithm and Performance
Our three-phase reconciliation algorithm—(1) static extrac-
tion via whole-program analysis, (2) dynamic augmentation
through test instrumentation, and (3) intelligent merging that
refines polymorphic targets—provably converges to ground
truth G∗ as test coverage increases. Table 3 summarizes the
algorithm’s complexity, empirical performance, and impact on
generation quality.

The dual approach adds 4.5s extraction overhead (55% in-
crease) but captures 31% more edges—primarily runtime call
targets and polymorphic type instantiations invisible to static
analysis. This richer semantic representation directly trans-
lates to generation improvements: 7.3% higher Pass@1, 34%

8

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Figure 2: Dual static-dynamic knowledge graph construction with automatic reconciliation.

Table 3: Knowledge graph construction: complexity analysis
and empirical validation on 50 repositories.

Metric Static Only Dual (Ours)

Complexity
Time O(n log n) O(n log n)
Space O(n+m) O(n+m)
Incremental update O(k log n) O(k log n)

Construction Performance
Extraction time (100K LOC) 8.2s 12.7s
Graph size (avg nodes) 15.3K 15.8K
Graph size (avg edges) 48.2K 63.1K (+31%)

Generation Quality Impact
Pass@1 improvement baseline +7.3%
Type error reduction baseline -34%
Dependency coverage 1.0× 2.3×

fewer type errors, and 2.3× better transitive dependency cov-
erage (Section 10.2).

Convergence guarantee: As test coverage c → 100%, our
dual graph G → G∗ (proof in supplementary material). The
key insight is that dynamic information monotonically refines
static analysis without introducing inconsistencies—each exe-
cution trace adds edges and constraints that either confirm or
specialize static predictions.

Implementation details. Our construction pipeline lever-
ages pylance for Python static analysis and custom instru-
mentation for trace collection. Graph storage, distributed pro-
cessing strategies, caching optimizations, and Neo4j integra-
tion details are provided in the supplementary material. These
implementation choices achieve the performance characteris-
tics shown in Table 3 but are orthogonal to our core algorith-
mic contribution.

6 Neural Query Planner

Determining which subset of a repository knowledge graph
is relevant to a specific coding task represents a fundamen-
tal challenge in repository-level code generation. Tradi-
tional retrieval methods use fixed strategies—keyword match-
ing (BM25) or embedding similarity—that rely on surface-
level lexical overlap. These approaches systematically miss
transitive dependencies, type constraints, and architectural pat-
terns that span multiple modules but lack textual similarity to
the query.

This section introduces the first learned approach to gen-
erate structured graph queries from natural language instruc-
tions. Rather than retrieving based on predetermined similarity
metrics, our REINFORCE-based algorithm learns repository-
specific query patterns that capture semantic relationships es-
sential for code generation. Our neural query planner achieves
73% precision in context selection compared to 51% for tra-

9

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Figure 3: Neural query planner transforming instructions to graph queries via learned generation.

ditional retrieval, directly contributing to improved generation
quality.

6.1 Problem Formulation
We formulate context selection as learning a mapping πϕ :
U → Q from natural language instructions to graph queries.
Unlike CoCoMIC [6] which uses syntactic matching, we opti-
mize:

ϕ∗ = argmax
ϕ

E(u,y)∼D [P(y|Gu, u)] (10)

where Gu = Exec(πϕ(u),G) is the retrieved subgraph.

6.2 Query Generation Algorithm
Our key innovation is learning to generate structured queries
rather than using fixed retrieval. The algorithm has three
stages:

Stage 1: Instruction Encoding. We encode natural lan-
guage u using Flan-T5 augmented with repository embeddings
capturing codebase-specific patterns.

Stage 2: Constrained Query Decoding. We generate
query sequences respecting our graph query grammar:

1: Input: Encoded instruction h, Graph schema S

2: Initialize beam B ← {¡start¿}
3: while not all beams complete do
4: Expand beams with valid tokens per grammar
5: Prune to top-k by likelihood
6: end while
7: return highest scoring complete query
Stage 3: Query Optimization. Apply predicate pushdown

and traversal elimination for efficiency.

6.3 REINFORCE Training with Graph-Aware
Rewards

Training the query planner requires learning without direct
query supervision—we observe only task descriptions and
ground-truth code, not optimal queries. We employ REIN-
FORCE [32] with carefully designed variance reduction:

J (ϕ) = Eq∼πϕ(·|u) [(R(y,Gu)− bψ(u)) · log πϕ(q|u)] (11)

Baseline Network Architecture. The baseline bψ(u) is a
separate critic network that estimates expected reward without
executing queries. It shares the same Flan-T5 encoder as the
policy πϕ but uses a distinct prediction head: a 2-layer MLP

10

Journal of Emerging Applied Artificial Intelligence (JEAAI)

with 512 hidden units that outputs scalar reward estimates.
This architecture enables the baseline to leverage instruction
semantics while training separately from the policy.

Joint Training Procedure. We train policy and baseline
jointly through alternating optimization:

1: for each training batch of (u, y) pairs do
2: Sample query q ∼ πϕ(·|u), execute to get Gu
3: Generate code, compute reward R(y,Gu)
4: Update baseline: ψ ← ψ−β∇ψ∥bψ(u)−R(y,Gu)∥2
5: Compute advantage: A = R(y,Gu)− bψ(u)
6: Normalize: Â = (A− µbatch)/σbatch
7: Update policy: ϕ← ϕ+ αÂ∇ϕ log πϕ(q|u)
8: end for

Variance Reduction Techniques. Beyond baseline subtrac-
tion, we employ four complementary strategies:

1. Advantage Normalization: Batch-wise normalization
of advantages (line 5 above) stabilizes gradients across diverse
tasks with varying reward scales.

2. Gradient Clipping: We clip policy gradients to [−1, 1]
per parameter, preventing destabilization from rare high-
reward samples.

3. Entropy Regularization: Adding λH[πϕ(·|u)] to the
objective (λ = 0.01) encourages exploration and prevents pre-
mature convergence to suboptimal queries.

4. Reward Scaling: Our multi-objective reward combines
weighted components:

R(y,Gu) = w1 ·Rtest(y) + w2 ·Rtype(y)− w3 · |Gu| (12)

where Rtest measures functional correctness (0-1), Rtype mea-
sures type violations (0-1), and |Gu| penalizes over-retrieval.
Weights (w1 = 1.0, w2 = 0.3, w3 = 0.001) are tuned on vali-
dation data.

Training Stability and Hyperparameters. We use Adam
optimizer with learning rate α = 5 × 10−5 for the policy and
β = 1× 10−4 for the baseline. Batch size is 32, and we apply
exponential reward discounting with γ = 0.95 to favor imme-
diate correctness over long-term metrics. Training converges
within 10K steps on typical repositories.

Empirically, the baseline network reduces gradient variance
by 67% compared to a constant baseline (measured via gra-
dient norm variance across training batches). Advantage nor-
malization further reduces variance by 43%. Gradient clip-
ping prevents occasional spikes from difficult tasks. Com-
bined, these techniques enable stable training: gradient norms
decrease monotonically after 2K steps, and validation perfor-
mance plateaus around 8K steps with final policy achieving
73% context precision.

Cold Start Strategy. To address initial exploration chal-
lenges, we warm-start training with 10K synthetic instruction-
query pairs generated through dependency analysis. Each
repository function’s static dependencies provide ground-truth
queries for hypothetical modification tasks. This initialization

reduces total training time by 52% and improves final perfor-
mance by 4.1%.

6.4 Learned Query Expansion
Unlike fixed expansion rules, we learn repository-specific pat-
terns for query augmentation. Given seed nodes from the ini-
tial query, we apply learned motif-based expansion:

Gexp
u = Gu ∪

⋃
m∈M

match(m,Gu) (13)

where M are learned co-modification patterns (e.g., model →
serializer → test).

This captures implicit dependencies: modifying a data
model automatically retrieves related serializers and end-
points.

6.5 Empirical Results
Our neural query planner significantly outperforms fixed re-
trieval strategies:

• Precision: 73% vs. 51% for BM25 retrieval

• Coverage: Captures 2.3× more transitive dependencies

• Efficiency: Sub-linear O(n1/k ·m) query complexity

Ablation studies (Section 10.2) show that learned query
planning contributes 6.2% to overall Pass@1 improvement.

6.6 Theoretical Guarantees
Theorem 4 (Convergence). With probability ≥ 1− δ, after T
iterations:

J (ϕT) ≥ max
ϕ∈H
J (ϕ)−O

(√
log(|H|/δ)

T

)
(14)

Theorem 5 (Query Complexity). Our hierarchical execu-
tion achievesO(n1/k ·m) time vs. O(n·m) for naive traversal.

These guarantees ensure practical convergence (typically
10K steps) and sub-second query execution even for million-
node graphs.

7 Schematic-Constraint Decoder
Language models generate code token-by-token based on
learned statistical patterns, with no inherent mechanism to
ensure the output satisfies the formal requirements of pro-
gramming languages or repository-specific constraints. This
fundamental mismatch between unconstrained text generation
and structured code synthesis leads to schematic hallucina-
tion—code that appears plausible but violates type systems,
function signatures, or architectural invariants.

Existing approaches to this problem apply constraints as
post-generation filters [20, 23, 31]. While this can detect er-
rors, it wastes computation generating invalid code and pro-
vides no guidance to the model during generation. This section

11

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Figure 4: SMT-integrated beam search pruning invalid paths during generation.

presents the first beam search algorithm with integrated SMT
solving for real-time constraint verification during decoding.
By pruning constraint-violating paths as they emerge, our ap-
proach eliminates 89% of type errors with only 6% latency
overhead, transforming constraint satisfaction from post-hoc
validation to integrated generation control.

7.1 Problem Formulation

We formulate constrained generation as optimization with se-
mantic constraints:

ŷ = argmax
y∈Y

logPθ(y | u,Gu) (15)

subject to C(y,Gu) = ∅ (16)

where C(y,Gu) returns constraint violations. Unlike Al-
phaCode [15] which struggles with semantic errors post-
generation, we enforce constraints during generation.

7.2 Constraint Types and SMT Encoding

We extract four constraint classes from Gu and encode them as
SMT formulas:

1. Type constraints: type(e) ⊆ expected type(e)

2. Signature constraints: arity(f) = |args(f)|

3. Visibility constraints: accessible(v, scope)

4. Architectural constraints: satisfies(pattern, rule)

Each constraint type maps to specific SMT theories: types
use algebraic datatypes, signatures use uninterpreted func-
tions, visibility uses graph reachability, and architectural pat-
terns use custom predicates.

7.3 Novel SMT-Integrated Beam Search Algo-
rithm

Our key innovation integrates Z3 SMT solver [5] directly into
beam search:

1: Input: Context Gu, Instruction u, Beam width k
2: Initialize beams B ← {(ϵ,SAT)} // empty sequence, SAT

state
3: while not all beams complete do
4: for each beam (y, s) ∈ B do
5: T ← LM.next tokens(y, u,Gu) // top tokens
6: for each token t ∈ T do
7: s′ ← s ∪ constraints(y · t,Gu)
8: if SMT.check(s′) = SAT then
9: Add (y · t, s′) to candidates

10: end if
11: end for
12: end for
13: B ← top-k candidates by score
14: end while

Incremental solving reuses learned clauses, achieving near-
constant constraint checking time.

7.4 Optimization Strategies
We achieve 6% overhead through three key optimizations:

1. Incremental Solving: Reuse solver state across beams
sharing prefixes via trie-based caching.

2. Constraint Preprocessing: Eliminate always-satisfied
constraints and partition independent constraint sets.

3. Batch Verification: Check multiple token proposals in
single solver calls using assumption literals.

These optimizations reduce average constraint checking
from 23ms to 1.4ms per token.

7.5 Empirical Validation
Our SMT-integrated decoder dramatically reduces schematic
hallucination:

12

Journal of Emerging Applied Artificial Intelligence (JEAAI)

• Error Reduction: 89% of type errors eliminated vs. un-
constrained generation

• Performance: 6% latency overhead (2.4s → 2.54s aver-
age)

• Coverage: Handles 94% of repository constraints with-
out timeout

Ablation studies (Section 10.2) show constraint enforce-
ment is critical: removing it increases schematic hallucination
by 112% (relative).

7.6 Theoretical Guarantees
Theorem 6 (Optimality). If valid completion y∗ exists within
top-k at each prefix, our algorithm finds it.

Theorem 7 (Complexity). Time complexity isO(n ·k · |Σ| ·
C) where C ≈ O(1) due to incremental solving.

The key insight: constraint monotonicity enables early
pruning without sacrificing optimality.

7.7 Summary
Our SMT-integrated beam search represents a paradigm shift
from post-hoc validation to real-time constraint enforcement.
By pruning invalid paths during generation, we eliminate the
vast majority of schematic errors while maintaining interactive
performance. This approach is general: the same framework
handles type constraints, API contracts, and architectural rules
across different programming languages and paradigms.

8 Continual Knowledge Graph Main-
tenance

Modern software repositories undergo continuous evolution,
with developers committing changes multiple times daily.
While time series forecasting techniques have shown promise
in predicting software evolution patterns [17], for a code gen-
eration system to remain effective, its underlying knowledge
graph must reflect these changes immediately—stale seman-
tic information leads to incorrect code generation. However,
reconstructing the entire graph after each change is computa-
tionally prohibitive for large repositories, where full extraction
can take minutes for codebases with millions of lines.

Existing approaches to this problem fall short in criti-
cal ways. IDE language servers (e.g., pylance [19]) use
timestamp-based invalidation that often misses semantic de-
pendencies. Build systems like Bazel [8] track file-level de-
pendencies but lack the semantic granularity needed for code
generation. Database view maintenance algorithms [11] pro-
vide theoretical foundations but assume simpler data models
than heterogeneous code graphs containing typed nodes, se-
mantic edges, and constraint relationships.

This section presents the first incremental maintenance al-
gorithm with formal optimality guarantees for code knowledge

graphs. Our approach achieves O(|∆R| · d · log n) complex-
ity while maintaining provable semantic equivalence to full
reconstruction, enabling real-time adaptation as repositories
evolve. The key innovation lies in combining impact analy-
sis with lazy cross-reference resolution to update only affected
graph regions while maintaining global consistency.

8.1 Problem Formulation
Let R0 denote a repository at time t = 0, and let ∆Ri rep-
resent the set of code modifications (additions, deletions, up-
dates) at time step i. The repository at time t is thus Rt =
R0+

∑t
i=1 ∆Ri. Our goal is to maintain an up-to-date knowl-

edge graph Gt that accurately represents the semantic structure
ofRt.

Formally, let FE denote the semantic extraction function
that constructs a knowledge graph from source code (as de-
fined in Section 5). The maintenance problem requires ensur-
ing:

Gt = FE

(
R0 +

t∑
i=1

∆Ri

)
(17)

The naive solution—recomputing FE(Rt) after each
change—has complexity O(n log n) where n is the repository
size. Our key insight is the locality of change principle: most
code modifications affect only a small, localized portion of
the semantic graph. By identifying and updating only these
affected regions, we achieve complexity O(|∆R| · d · log n)
where |∆R| is the change size and d is the maximum depen-
dency depth.

8.2 Impact Analysis Algorithm
To achieve incremental updates, we must precisely identify
which parts of the knowledge graph are affected by code
changes. Our novel two-phase impact analysis computes the
minimal set of nodes requiring updates:

Phase 1: Direct Impact Analysis. We first identify nodes
directly corresponding to modified code entities. Let V denote
the set of all nodes in the current graph. The direct impact set
is:

Id = {v ∈ V : modified(code(v))} (18)

where code(v) maps a graph node to its source code represen-
tation. Crucially, we employ semantic differencing on abstract
syntax trees (ASTs) rather than textual comparison, eliminat-
ing false positives from superficial changes like whitespace or
comments.

Phase 2: Transitive Impact Analysis. Code changes often
have ripple effects—modifying a function signature affects all
its callers. We compute the transitive closure of dependencies:

It = Id ∪ {v ∈ V : ∃ path p from u ∈ Id to v in G} (19)

Our key optimization bounds this closure by dependency
type: type changes propagate transitively, but implementation
changes often have local impact. This selective propagation
reduces |It| by 73% on average compared to naive transitive
closure.

13

Journal of Emerging Applied Artificial Intelligence (JEAAI)

8.3 Novel Incremental Update Algorithm

Our incremental update algorithm operates in three carefully
orchestrated phases that maintain graph consistency while
minimizing computational overhead:

1: Input: Current graph Gt, Code changes ∆R
2: Output: Updated graph Gt+1

3:
4: // Phase 1: Surgical Invalidation
5: Compute impact sets Id, It using impact analysis
6: Gpartial ← Gt \ {v, e : v ∈ It or e incident to It}
7:
8: // Phase 2: Focused Re-extraction
9: G∆ ← FE({f ∈ ∆R : f contains v ∈ Id})

10:
11: // Phase 3: Intelligent Reconciliation
12: Gt+1 ← merge(Gpartial,G∆) with:
13: - Preserve existing node IDs for unchanged entities
14: - Resolve type conflicts using most specific type
15: - Mark cross-file references for lazy resolution
16:
17: return Gt+1

The key innovation is our lazy cross-reference resolution.
Consider a scenario where function authenticate() is
modified: traditional approaches would immediately update
all 500+ call sites across the repository. Instead, we mark these
references as ”pending” and resolve them only when the code
generator actually queries those specific call sites. This defers
O(n) work to O(1) amortized cost, reducing update latency
by 84% in practice while maintaining correctness through our
eventual consistency guarantee.

8.4 Empirical Validation

We conducted comprehensive performance evaluation of our
incremental maintenance algorithm on the 50 repositories in
REPOKG-50 and five popular open-source Python projects,
comparing against full reconstruction and two baselines: naive
incremental updates (without lazy resolution) and timestamp-
based caching (common in IDE language servers).

8.4.1 Experimental Setup and Methodology

Test Corpus. We collected 5,000 real commits from
REPOKG-50 repositories, categorized by change size: small
(1-5 files), typical (5-20 files), and large (20+ files). Addition-
ally, we analyzed 1,000 commits from Django, Scikit-learn,
Pandas, Flask, and Requests to validate generalization.

Measurement Protocol. All timing measurements repre-
sent wall-clock time averaged over 100 runs per commit size
category. We measure five phases: impact analysis, graph in-
validation, re-extraction, reconciliation, and lazy resolution.
Memory usage is measured via psutil at 10ms intervals,
reporting peak working set size.

Table 4: Detailed incremental update performance on
REPOKG-50 repositories

Metric Change Size (files) vs Baseline
1-5 5-20 20+ Full Naive

Latency (s)
SemanticForge 0.18 0.52 1.73 -96% -71%
Full Rebuild 12.4 12.7 13.8 — —
Naive Incremental 1.89 6.78 28.9 — —
Timestamp Cache 0.71 2.68 12.2 — —

Memory (MB)
SemanticForge 58 126 178 -97% -93%
Full Rebuild 2400 2400 2400 — —
Naive Incremental 420 980 1680 — —

Speedup Factor
vs Full Rebuild 69x 24x 8x — —
vs Naive 11x 13x 17x — —
vs Timestamp 3.9x 5.2x 7.0x — —

8.4.2 Quantitative Performance Results

Figure 5 presents comprehensive performance analysis across
four dimensions. The results validate our theoretical com-
plexity bounds while demonstrating practical viability for real-
world deployment.

Update Latency Analysis. As shown in Figure 5(a), our
algorithm achieves sub-second updates for typical commits
(5-20 files), completing in 0.18-0.52 seconds versus 12.4-12.7
seconds for full reconstruction—a 96% reduction. The empir-
ical scaling closely matches our theoretical O(|∆R| ·d · log n)
bound, with measured exponent 1.42 (R2 = 0.97).

Component-Level Performance. Figure 5(b) reveals that
re-extraction dominates update cost (38% of total time), fol-
lowed by graph invalidation (24%) and impact analysis (17%).
Critically, lazy resolution adds minimal overhead (3%), vali-
dating our deferred computation strategy.

Memory Efficiency. Our working set scales linearly with
change size at approximately 8-12MB per modified file for
typical commits (10-15 files), using only 126MB compared
to 2.4GB for full reconstruction—a 95% reduction. This dra-
matic memory efficiency enables concurrent maintenance of
multiple repositories on standard developer hardware without
dedicated infrastructure.

8.4.3 Real-World Repository Case Studies

To validate generalization beyond REPOKG-50, we evaluated
our algorithm on five widely-used Python projects with diverse
characteristics:

The consistent 45-71x speedup across diverse repositories
confirms that our algorithm’s benefits generalize beyond the
evaluation benchmark. Notably, larger repositories (Django,
Pandas) show higher speedup factors due to our sub-linear
scaling properties.

Long-term Accuracy. Crucially, ablation studies (Sec-

14

Journal of Emerging Applied Artificial Intelligence (JEAAI)

100 101 102

Number of Modified Files

10 1

100

101

102

U
pd

at
e

La
te

nc
y

(s
ec

on
ds

)

0.52s

90% reduction

(a) Incremental Update Performance
SemanticForge (Lazy)
Full Reconstruction
Naive Incremental
Timestamp Cache
Typical commits

Impact
Analysis

Graph
Invalidation

Re-extractionReconciliation Lazy
Resolution

Update Phase

0

50

100

150

200

250

300

350

Ti
m

e
(m

ill
is

ec
on

ds
)

(b) Component-wise Latency Breakdown
5 files
20 files
50 files

0 100 200 300 400 500
Repository Size (KLOC)

101

102

103

104

Pe
ak

 M
em

or
y

U
sa

ge
 (M

B
)

98% reduction

(c) Memory Usage Scaling
SemanticForge (Incremental, 10-15 files)
Full Reconstruction
Naive Incremental (10-15 files)

0 10 20 30 40 50
Update Time (seconds)

Django
(475K)

Scikit-learn
(240K)

Requests
(25K)

Flask
(35K)

Pandas
(380K)

66x

57x

45x

47x

71x

(d) Real-world Repository Performance
Incremental Update
Full Reconstruction

Incremental Knowledge Graph Maintenance Performance on REPOKG-50

Experiments on REPOKG-50 benchmark. Measurements averaged over 100 commits per repository. Hardware: Intel Xeon Gold 6248R (3.0GHz), 64GB RAM. Typical commit: 10-15 modified files.

Figure 5: Incremental knowledge graph maintenance performance on REPOKG-50. (a) Update latency scales with change size,
achieving 90% reduction versus full reconstruction for typical commits. (b) Component-wise breakdown reveals re-extraction
as the dominant cost. (c) Memory usage remains proportional to change size, enabling workstation deployment. (d) Real-world
repositories show consistent 66x average speedup.

Table 5: Performance on real-world repositories (10-15 file
commits)

Repository Size Incr. Full Speedup
(KLOC) (s) (s)

Django 475 0.68 45.2 66x
Scikit-learn 240 0.42 23.8 57x
Pandas 380 0.54 38.6 71x
Flask 35 0.15 7.1 47x
Requests 25 0.12 5.4 45x

Average — 0.38 24.0 63x

tion 10.2) reveal that without continual maintenance, code
generation accuracy degrades by 4.1% after 30 days and 12.7%
after 100 commits. This degradation stems from outdated type
information and missed API changes, validating that real-time
maintenance is essential, not optional.

8.4.4 Optimization Impact Analysis

To understand the contribution of each algorithmic optimiza-
tion, we conducted controlled ablation experiments disabling
individual components:

Lazy Resolution Impact. Disabling lazy cross-reference
resolution increases latency by 448%, confirming it as our
most critical optimization. For a function with 100 call sites,
lazy resolution defers 98% of updates until actually queried.

Table 6: Impact of algorithmic optimizations on update latency

Configuration Latency vs Full Impact
(ms) System

Full System 520 — —
w/o Lazy Resolution 2,847 +448% Critical
w/o Selective Propagation 1,423 +174% High
w/o Semantic Diff 892 +72% Medium
w/o Index Caching 687 +32% Low

Naive Implementation 6,780 +1204% —

Selective Propagation. Our type-aware propagation strat-
egy reduces unnecessary graph traversals by 73%, contributing
174% performance improvement over naive transitive closure.

8.4.5 Scalability Validation

We stress-tested our algorithm on synthetic repositories up to
5M LOC to validate scalability claims:

The sub-linear growth rates (1.19x-1.28x) for 50x reposi-
tory size increase confirm our theoretical O(|∆R| · d · log n)
complexity, with the logarithmic factor dominating at scale.

8.5 Theoretical Guarantees
Our maintenance algorithm provides two critical theoretical
guarantees that distinguish it from heuristic approaches:

15

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 7: Scalability to large-scale repositories

Repo Size Update Time (s) Memory
(KLOC) Small Medium Large (MB)

100 0.15 0.48 1.52 126
500 0.19 0.58 1.94 245

1,000 0.23 0.68 2.31 387
5,000 0.34 0.92 3.47 892

Growth Rate 1.27x 1.19x 1.28x 1.87x

Theorem 8 (Semantic Equivalence). For any sequence
of repository modifications ∆R1, . . . ,∆Rt, the incrementally
maintained graph G inc

t is semantically equivalent to the graph
G full
t obtained by full reconstruction.
Proof sketch: The key insight is that our semantic extraction

function FE exhibits the monotonicity property: the graph rep-
resentation of code entity e depends only on e and its depen-
dencies, not on the extraction order. Since our algorithm up-
dates exactly the impact set It containing all affected entities,
and lazy resolution ensures eventual consistency for cross-
references, the final graph state is identical regardless of up-
date path. □

Theorem 9 (Complexity Bound). For a repository with n
entities, modifications affecting |∆R| entities, and maximum
dependency depth d, our incremental algorithm has time com-
plexity O(|∆R| · d · log n) compared to O(n · log n) for full
reconstruction.

Proof sketch: Impact analysis visits at most |∆R| · d nodes
via dependency traversal. Each node operation (removal,
insertion, lookup) costs O(log n) using our graph indices.
Lazy resolution amortizes cross-reference updates across fu-
ture queries. Since typical commits have |∆R| ≪ n and d is
bounded by architectural depth, we achieve sub-linear scaling.
□

8.6 Discussion and Implications
The continual maintenance component represents a paradigm
shift in how knowledge-based code generation systems han-
dle repository evolution. Prior systems either ignore changes
(leading to stale information) or require manual re-indexing.
Our approach provides three key advantages:

Real-time Responsiveness. Sub-second update latency en-
ables integration with development workflows where code
changes continuously. Developers see generated code that re-
flects their latest modifications without manual intervention.

Theoretical Soundness. Unlike heuristic caching strate-
gies, our semantic equivalence guarantee ensures that incre-
mental updates never compromise correctness. This is critical
for production systems where incorrect code generation has
high costs.

Practical Scalability. The sub-linear complexity bound
makes our approach viable for industrial-scale repositories.
Google’s monorepo or Microsoft’s Windows codebase can be
maintained incrementally despite their massive size.

This continual adaptation capability transforms SEMAN-
TICFORGE from a static analysis tool into a living system
that evolves with the codebase, ensuring sustained accuracy
throughout the software development lifecycle.

9 Experimental Setup

This section describes our comprehensive experimental
methodology designed to evaluate SEMANTICFORGE across
multiple dimensions: functional correctness, hallucination re-
duction, computational efficiency, and scalability. We estab-
lish rigorous evaluation protocols that address the unique chal-
lenges of repository-level code generation assessment.

9.1 Dataset Construction

We introduce REPOKG-50, a curated benchmark specifically
designed for repository-level code generation evaluation. The
dataset addresses critical limitations of existing benchmarks
that focus on isolated function synthesis rather than repository-
scale integration challenges.

Repository Selection Criteria. We select 50 high-quality
Python repositories from GitHub based on the following cri-
teria: (1) Repository size between 10K-500K lines of code to
ensure meaningful complexity while maintaining experimen-
tal tractability; (2) Comprehensive test suites with ¿80% cov-
erage to enable reliable dynamic analysis; (3) Active devel-
opment with ¿100 commits in the past year to ensure modern
coding practices; (4) Diverse domains including web frame-
works, data processing, machine learning, and system utilities;
(5) Clear architectural patterns and documentation to facilitate
ground truth validation.

Task Generation Methodology. For each repository, we
generate coding tasks through three complementary ap-
proaches:

Historical Analysis: We analyze commit histories to iden-
tify real development tasks that required multi-file modifica-
tions. We extract the commit message as the natural language
instruction and the diff as the ground truth implementation.
This yields 1,247 authentic tasks with natural complexity dis-
tribution.

Synthetic Task Generation: We develop an automated task
generator that creates instructions requiring specific types of
repository knowledge. Tasks include: API extension (adding
new endpoints with proper authentication), refactoring (ex-
tracting common functionality), bug fixing (correcting logic
errors while maintaining interface compatibility), and feature
integration (adding functionality that spans multiple modules).
This produces 2,156 controlled tasks with known difficulty
characteristics.

Developer-Authored Tasks: We engage 12 experienced de-
velopers to manually create challenging tasks that represent
realistic development scenarios. Each developer contributes

16

Journal of Emerging Applied Artificial Intelligence (JEAAI)

25-30 tasks per repository subset, resulting in 847 high-quality
tasks with detailed solution explanations.

Ground Truth Construction. Each task includes: (1) Nat-
ural language instruction following template guidelines to en-
sure clarity and consistency; (2) Complete reference imple-
mentation verified through automated testing and manual re-
view; (3) Semantic annotations identifying required repository
knowledge (which functions must be understood, which con-
straints must be satisfied); (4) Difficulty ratings based on re-
quired context size and constraint complexity; (5) Expected
hallucination types based on common failure patterns.

Dataset Statistics and Composition. REPOKG-50 con-
tains 4,250 total tasks across 50 repositories representing 1.2M
lines of code. Tasks span multiple difficulty levels: 35% be-
ginner (single-file modifications), 45% intermediate (multi-file
with local dependencies), 20% advanced (complex architec-
tural changes). The dataset includes comprehensive metadata
enabling fine-grained analysis of system performance across
different task characteristics.

Repository Licensing and Selection. All 50 repositories are
selected from GitHub under permissive open-source licenses:
32 MIT-licensed, 12 Apache 2.0, 4 BSD-3-Clause, and 2 GPL-
3.0. We verify license compatibility for academic research use
and ensure no proprietary code is included. Repository selec-
tion prioritizes well-maintained projects with active commu-
nities (average 2,847 stars, 412 forks) to ensure code quality
and realistic development patterns. The full list of reposito-
ries with their licenses, domains, and statistics is provided in
supplementary material Table A1.

Data Splits and Validation Protocol. We partition the
4,250 tasks into training (60%, 2,550 tasks), validation (20%,
850 tasks), and test (20%, 850 tasks) sets. The split is strati-
fied by repository and difficulty level to ensure balanced rep-
resentation. For cross-repository generalization experiments,
we use leave-one-cluster-out validation where entire reposi-
tory clusters are held out. Training data is used exclusively
for query planner training via REINFORCE; the Code-Llama-
34B base model is used frozen without fine-tuning. Validation
data guides hyperparameter selection and early stopping. All
reported results are on the test set, which is never accessed
during development.

Public Availability and Reproducibility. We commit to re-
leasing REPOKG-50 publicly upon paper acceptance under a
CC BY 4.0 license. The release includes: (1) all 4,250 task
descriptions and reference implementations, (2) pre-computed
static and dynamic knowledge graphs for all 50 repositories,
(3) evaluation scripts and metrics computation code, (4) de-
tailed repository metadata and statistics, and (5) baseline im-
plementation code for fair comparison. Data and code will
be hosted at https://github.com/semanticforge/
repokg50 with comprehensive documentation. We estimate

the full dataset release at approximately 15GB (compressed),
including all graphs and annotations.

9.2 Evaluation Metrics
We establish a multi-dimensional evaluation framework that
captures both functional correctness and the specific halluci-
nation phenomena targeted by our approach.

Functional Correctness Metrics.

• Pass@k: Fraction of tasks where at least one of the top-
k generated solutions passes all test cases. We report
Pass@1, Pass@5, and Pass@10 to capture both precision
and recall characteristics.

• Test Pass Rate: Average percentage of test cases passed
across all generated solutions, providing a more nuanced
view of partial correctness.

• Compilation Success Rate: Percentage of generated so-
lutions that compile without errors, indicating basic syn-
tactic correctness.

• Integration Success Rate: Percentage of solutions that
successfully integrate with the existing codebase without
breaking existing functionality.

Hallucination-Specific Metrics.

• Logical Hallucination Rate (LHR): Percentage of gen-
erated solutions that compile but fail functional tests
due to incorrect program logic. Computed as: LHR =
compilable but failing solutions

total solutions

• Schematic Hallucination Rate (SHR): Percentage of
solutions that violate type, signature, or architectural
constraints. Measured through static analysis: SHR =
solutions with constraint violations

total solutions

• Constraint Violation Frequency: Detailed breakdown
of specific constraint types violated (type mismatches,
signature errors, visibility violations, architectural incon-
sistencies).

• Hallucination Severity: Classification of errors by re-
quired effort to fix (trivial: 1-line fix, moderate: 2-10
lines, severe: > 10 lines or architectural changes).

Context Selection Precision Metrics.

• Context Precision: Percentage of retrieved context ele-
ments that are actually used in the correct solution. Com-
puted by comparing retrieved subgraph nodes against a
manually-annotated gold standard of required dependen-
cies for each task.

• Context Recall: Percentage of required dependencies
that are successfully retrieved. Gold standard established
through manual analysis of 500 randomly sampled tasks
by three expert annotators (inter-rater agreement κ =
0.81).

17

https://github.com/semanticforge/repokg50
https://github.com/semanticforge/repokg50

Journal of Emerging Applied Artificial Intelligence (JEAAI)

• Context F1 Score: Harmonic mean of precision and re-
call for balanced evaluation of context selection quality.

Code Quality Metrics.

• Maintainability Index: Composite metric based on cy-
clomatic complexity, lines of code, and Halstead metrics.

• Style Consistency: Adherence to repository-specific
coding conventions measured through automated linters.

• API Usage Appropriateness: Correctness of library and
framework usage patterns based on repository-specific
guidelines.

• Documentation Quality: Presence and quality of gener-
ated comments and docstrings.

Efficiency Metrics.

• Generation Latency: End-to-end time from instruction
to generated code, broken down by pipeline stage.

• Context Retrieval Time: Time required for query plan-
ning and subgraph extraction.

• Constraint Solving Overhead: Additional time intro-
duced by SMT-based constraint checking.

• Memory Usage: Peak memory consumption during gen-
eration, including knowledge graph storage.

9.3 Baseline Systems
We compare SEMANTICFORGE against state-of-the-art
repository-level code generation systems and relevant
baselines across different paradigms.

Neural Baselines.

• Code-Llama-34B: Base language model with BM25-
based retrieval for repository context. We retrieve top-
10 most similar functions/classes using TF-IDF scoring,
providing up to 4096 tokens of context. Generation uses
greedy decoding (temperature=0.2, top-p=0.95). Runs on
same A100 GPU with identical batch size for fair com-
parison.

• StarCoder-15B: Code-specialized model with Code-
BERT embeddings for dense retrieval. Top-15 retrieved
snippets with cross-encoder reranking. Uses nucleus
sampling (p=0.95) with temperature=0.8. Requires 15GB
GPU memory.

• GPT-4-Code: Accessed via API with repository context
provided through carefully engineered prompts (up to
8192 tokens). We implement few-shot prompting (3 ex-
amples) and iterative refinement disabled to match single-
pass comparison. API calls use temperature=0.1 for con-
sistency.

Repository-Aware Systems.

• RepoCoder: We reimplement using GraphCodeBERT
encoder with graph attention networks (3 layers, 8 heads)
for repository understanding. Generation uses the same
Code-Llama-34B backbone for fair comparison. Graph
construction uses AST-based data flow analysis. Training
uses cross-entropy loss for 20K steps.

• CodePlan: Planning decomposition uses GPT-3.5 for
task breakdown (max 5 subtasks), followed by Code-
Llama-34B for implementation. We optimize decompo-
sition prompts and provide access to the same repository
metadata. Average 3-5 generation passes per task.

• RAG-Code: Dense retrieval using CodeBERT embed-
dings with FAISS indexing. Cross-encoder reranking
(top-50 → top-10). Context window: 6144 tokens. Gen-
eration uses Code-Llama-34B with identical settings to
our decoder (excluding constraint checking).

Graph-Based Approaches.

• GraphCodeBERT: 125M parameter model with data
flow graph pre-training. Fine-tuned on our training data
for 15 epochs. Uses graph-guided attention but no persis-
tent graph storage.

• UniXcoder: 125M parameter multi-modal model encod-
ing code, AST, and comments. Fine-tuned with con-
trastive learning on code-documentation pairs from our
repositories.

• CodeT5+: 220M parameter encoder-decoder with struc-
tural understanding. Fine-tuned on our dataset using
teacher forcing for 20 epochs. Uses beam search (k=5)
without constraint checking.

Baseline Fairness and Comparison Methodology. To en-
sure rigorous comparison, we implement extensive baseline
optimization and standardization protocols:

Computational Budget Equalization: All systems receive
identical computational budgets. For Code-Llama baselines,
we allocate the same 2.5s average time budget as SEMANTIC-
FORGE by optimizing retrieval speed. For planning-based sys-
tems, we cap iterations at 5 to maintain practical latency (¡10s).
GPU memory is standardized at 40GB for all neural systems.
We measure wall-clock time including all preprocessing but
excluding one-time setup (model loading, graph construction).

Context Provision Parity: Critical for fair comparison, all
systems receive access to repository information:

• RAG baselines: Full repository code indexed with both
BM25 and dense embeddings

• Planning systems: Access to file structure, import graphs,
and function signatures

• Graph-based models: AST and data flow information ex-
tracted via same tools

18

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Context window limits match natural capacities: 4096 tokens
for Code-Llama, 8192 for GPT-4, 2048 for smaller models.

Hyperparameter Optimization: All baselines undergo
systematic hyperparameter tuning on a held-out validation set
(10% of data, stratified by repository). We perform grid search
over key parameters: retrieval k (5-20), generation temperature
(0.1-1.0), beam width (1-10), and model-specific settings. We
report best configuration found within 50 trials per system.

Implementation Rigor: We reimplement baselines from
published descriptions when code is unavailable, validated
against reported metrics where possible:

• RepoCoder: Our implementation achieves 38.9%
Pass@1 vs. 37.2% reported in the original paper

• CodePlan: Our optimization yields 42.3% vs. 39.1% in
original publication

• RAG-Code: 40.1% in our setup vs. 38.7% reported

This demonstrates our implementations match or exceed pub-
lished performance, ensuring fair comparison.

Statistical Protocol for Comparison: All pairwise com-
parisons use paired t-tests (same tasks for all systems) with
Bonferroni correction for 9 comparisons (α = 0.05/9 ≈
0.0056). We report both p-values and effect sizes (Cohen’s
d). Confidence intervals are computed via stratified bootstrap
(1000 resamples, preserving repository distribution).

Ablation Variants. To isolate the contribution of each sys-
tem component:

• SEMANTICFORGE-Static: Using only static analysis
without dynamic traces, but maintaining all other opti-
mizations.

• SEMANTICFORGE-NoCons: Removing constraint en-
forcement from the decoder while preserving knowledge
graph infrastructure.

• SEMANTICFORGE-NoPlanner: Using BM25-based re-
trieval optimized with repository-specific term weighting
instead of neural query planning.

• SEMANTICFORGE-NoMaint: Without continual main-
tenance, using stale graphs from repository snapshots 30
days prior.

• SEMANTICFORGE-Oracle: Upper bound experiment
using manually curated context to isolate generation vs.
planning contributions.

9.4 Implementation Details
Model Configuration. We instantiate SEMANTICFORGE
with Flan-T5-Large (770M parameters) for query planning
and Code-Llama-34B for code generation. The planner uses
512-dimensional hidden states with 8 attention heads. The de-
coder employs beam search with width k=5 and incorporates
our SMT-based constraint checking at each step. Both models
use bfloat16 precision for efficiency.

Training Configuration. Query planner training uses RE-
INFORCE with Adam optimizer (learning rate α = 5× 10−5

for policy, β = 1×10−4 for baseline critic), batch size 32, and
exponential reward discounting (γ = 0.95). The baseline is a
2-layer MLP with 512 hidden units trained jointly via MSE
loss. We employ advantage normalization, gradient clipping
([−1, 1]), and entropy regularization (λ = 0.01) for variance
reduction. Synthetic data warm-start involves 10,000 gener-
ated instruction-query pairs per repository. Training converges
within 10K steps on typical repositories.

Hardware and Infrastructure. All experiments run on
identical hardware: NVIDIA A100 GPUs (40GB) for neu-
ral components, 8-core Intel Xeon Gold 6248R processors
(3.0GHz) with 64GB DDR4 RAM for graph operations.
Knowledge graph extraction processes repositories in 5-15
seconds. Query response times remain < 10ms for reposi-
tories up to 500K LOC through optimized Neo4j indexing.

Constraint Solver Configuration. We use Z3 version
4.12.2 with incremental solving enabled. Constraint encod-
ing uses: first-order logic for type relationships, uninterpreted
functions for API contracts, and custom theories for architec-
tural patterns. Solver timeout is 100ms per beam step. In-
cremental state caching and batch verification reduce average
checking time to 1.4ms per token.

Timing Measurement Protocol. All latency measurements
represent wall-clock time averaged over 100 runs per task, ex-
cluding compilation and environment setup. We measure five
granular stages: (1) instruction encoding (0.12s), (2) graph
query generation and execution (0.31s), (3) context prepara-
tion (0.19s), (4) code generation with LM (1.70s), and (5)
SMT constraint checking (0.23s). Total average: 2.55s, re-
ported as 2.5s. We exclude outliers beyond 2 standard devia-
tions (3.2% of samples). Statistical variance is reported using
95% bootstrap confidence intervals over 1000 resamples.

Memory Profiling Methodology. Peak memory consump-
tion is measured using NVIDIA nvidia-smi for GPU mem-
ory and psutil for system RAM, sampled at 100ms intervals
throughout generation. We report maximum observed val-
ues across all tasks. Memory measurements include: model
weights (11.2GB), knowledge graph cache (1.8GB), interme-
diate activations (0.7GB), and SMT solver state (0.5GB).

Reproducibility and Variance Control. To ensure repro-
ducible results, we control multiple sources of variance:

• Random seeds: Fixed seeds for all stochastic compo-
nents (42 for model initialization, 123 for data splitting,
456 for sampling)

• System state: All experiments run on dedicated nodes
with no competing processes

• Software versions: PyTorch 2.0.1, CUDA 11.8, Python
3.10.6, Z3 4.12.2, Neo4j 5.9.0

19

Journal of Emerging Applied Artificial Intelligence (JEAAI)

• Deterministic operations: CUDA deterministic mode
enabled, cuDNN benchmarking disabled

• Multiple runs: Each configuration tested 3 times with
different initialization; we report mean across runs with
standard error < 2% for all metrics

These controls enable other researchers to reproduce our re-
sults within 5% variance, validated through independent re-
production by two co-authors on separate infrastructure.

9.5 Human Evaluation Protocol

To complement automated metrics, we conduct comprehen-
sive human evaluation focusing on aspects difficult to capture
through automated assessment.

Evaluator Selection and Training. We recruit 18 profes-
sional software developers with 3+ years of experience in
Python development. Evaluators undergo training on our as-
sessment criteria and complete practice evaluations to ensure
consistency. Inter-rater agreement is measured using Fleiss’
kappa, achieving κ = 0.73 indicating substantial agreement.

Evaluation Dimensions.

• Code Quality: Overall assessment of generated code
quality on a 5-point Likert scale considering readability,
maintainability, and adherence to best practices.

• Integration Appropriateness: How well the generated
code fits with existing repository architecture and con-
ventions.

• Error Analysis: Detailed categorization of errors with
difficulty estimates for manual correction.

• Preference Ranking: Comparative evaluation where
evaluators rank solutions from different systems for the
same task.

Evaluation Procedure. Each evaluator assesses solutions
for 25 randomly sampled tasks across different difficulty lev-
els. Solutions are presented in randomized order with system
identities masked. Evaluators have access to the full repository
context and task description. The evaluation interface provides
guided prompts to ensure comprehensive assessment.

9.6 Cross-Repository Generalization Analysis

To assess the generalizability of SEMANTICFORGE across di-
verse codebases, we conduct comprehensive cross-repository
evaluation that goes beyond standard within-repository valida-
tion.

Repository Clustering and Stratification. We cluster our
50 repositories into 5 groups based on architectural character-
istics: (1) Web frameworks with MVC patterns, (2) Data pro-
cessing pipelines with functional patterns, (3) Object-oriented
libraries with inheritance hierarchies, (4) Scientific computing
with numerical patterns, and (5) System utilities with proce-
dural patterns. This clustering enables analysis of how archi-
tectural diversity affects system performance.

Cross-Repository Training and Testing. We implement
a leave-one-cluster-out evaluation protocol where the query
planner is trained on repositories from 4 clusters and tested
on the held-out cluster. This evaluates whether semantic pat-
terns learned from one architectural style generalize to differ-
ent coding paradigms. We repeat this process for all 5 clusters
to obtain robust generalization estimates.

Knowledge Transfer Analysis. We measure how effec-
tively knowledge graphs from source repositories can boot-
strap performance on target repositories with different charac-
teristics. This includes: (1) semantic pattern overlap analysis
using graph isomorphism metrics, (2) constraint transferability
assessment across different architectural styles, and (3) adap-
tation time measurement for new repository integration.

Domain Adaptation Protocols. For each target repository,
we evaluate: (1) zero-shot performance using knowledge
graphs from other domains, (2) few-shot adaptation with 10-50
target domain examples, and (3) full adaptation with complete
target repository analysis. This protocol reveals the minimum
adaptation requirements for practical deployment.

9.7 Theoretical Validation Experiments
To validate the theoretical claims in our paper, we conduct spe-
cific experiments targeting each theorem:

Theorem 3 Validation (Incremental Update Equivalence).
We verify semantic equivalence between incremental updates
and full reconstruction by comparing knowledge graphs built
both ways on 100 repository snapshots with varying change
sizes (10-500 modified files). Graph isomorphism testing con-
firms identical structure in 100% of cases, validating the se-
mantic equivalence claim.

Theorem 4 Validation (Convergence with Coverage). We
measure knowledge graph accuracy as test coverage increases
from 20% to 90% across 10 representative repositories. Re-
sults show monotonic improvement in graph completeness
(measured by edge recall against manually-annotated ground
truth), with 95% accuracy at 80% coverage, supporting the
convergence claim.

9.8 Statistical Analysis
We employ rigorous statistical methods to ensure the reliabil-
ity and significance of our experimental results across both

20

Journal of Emerging Applied Artificial Intelligence (JEAAI)

within-repository and cross-repository settings.

Significance Testing. We use paired t-tests for comparing
system performance on the same task set, with Bonferroni cor-
rection for multiple comparisons. Effect sizes are reported us-
ing Cohen’s d to assess practical significance. Bootstrap confi-
dence intervals (95%) provide robust uncertainty estimates for
all reported metrics. For cross-repository analysis, we employ
mixed-effects models to account for repository-level cluster-
ing.

Cross-Validation Protocols. We employ three complemen-
tary validation strategies: (1) 5-fold cross-validation at the
repository level to ensure results generalize across different
codebases within the same architectural family, (2) leave-one-
cluster-out validation to assess cross-architectural generaliza-
tion, and (3) temporal validation using repository snapshots
from different time periods to evaluate robustness to codebase
evolution.

Generalization Metrics. We introduce several metrics to
quantify cross-repository generalization: (1) Architectural
Transfer Coefficient measuring performance retention across
different design patterns, (2) Semantic Overlap Index quan-
tifying knowledge graph similarity between repositories, and
(3) Adaptation Efficiency measuring the rate of performance
improvement during domain adaptation.

Fairness Considerations. We analyze system performance
across different repository characteristics (size, domain, com-
plexity, programming paradigm) to identify potential biases.
Statistical parity metrics ensure that performance differences
are not systematically related to repository metadata rather
than actual task difficulty. We also assess whether certain ar-
chitectural patterns or coding styles receive disproportionate
benefit from our approach.

This comprehensive experimental framework enables thor-
ough evaluation of SEMANTICFORGE while establishing re-
producible benchmarks for future research in repository-level
code generation.

10 Results and Analysis

This section presents comprehensive experimental re-
sults demonstrating SEMANTICFORGE’s effectiveness in
repository-level code generation. Our evaluation reveals
significant improvements in functional correctness, dramatic
reductions in both logical and schematic hallucination, and
practical scalability for real-world deployment.

10.1 Overall Performance Results
Table 8 summarizes the performance of SEMANTICFORGE
compared to state-of-the-art baselines across our core metrics
on the REPOKG-50 benchmark.

SEMANTICFORGE achieves substantial improvements
across all metrics: 7.5% absolute improvement in Pass@1
over the strongest baseline (CodePlan), 49.8% reduction in
schematic hallucination rate compared to GPT-4-Code, and
34.7% reduction in logical hallucination rate. These im-
provements demonstrate the effectiveness of our knowledge
graph-guided approach for repository-level code generation.

Baseline Comparison Details. To contextualize these re-
sults, we note the specific baseline configurations that pro-
duced the reported numbers. Code-Llama-34B with BM25
retrieval (top-10 functions, 4096 token context) represents a
strong RAG baseline; our 15.6% improvement over it vali-
dates the value of semantic graphs versus keyword matching.
CodePlan’s 42.3% result comes from optimized 3-5 iteration
planning with GPT-3.5 decomposition; our single-pass 49.8%
demonstrates that constraint-aware generation eliminates the
need for iterative refinement. GPT-4-Code’s 41.7% with 8192-
token context and few-shot prompting shows that even larger
context windows cannot substitute for explicit semantic struc-
ture. These comparisons isolate SEMANTICFORGE’s algorith-
mic contributions from implementation advantages.

Statistical Significance and Comparison Methodology.
All performance improvements are statistically significant
(p < 0.001) using paired t-tests with Bonferroni correction
for 9 pairwise comparisons (α = 0.0056). We employ paired
tests because all systems evaluate on identical task instances,
increasing statistical power. Effect sizes (Cohen’s d) range
from 0.82 to 1.47, indicating large practical significance be-
yond mere statistical significance. Bootstrap confidence inter-
vals (95%, 1000 resamples with stratification by repository)
confirm robustness across different repository samples.

We validate that performance differences are not artifacts
of our specific infrastructure by running a subset of exper-
iments (500 tasks) on alternative hardware (NVIDIA V100,
AMD EPYC processors). Results show < 3% variance in
relative performance rankings, confirming that SEMANTIC-
FORGE’s advantages generalize across hardware platforms.

10.2 Component Ablation Analysis
We conduct a systematic component ablation study to isolate
the contribution of each SEMANTICFORGE component and
validate our architectural design decisions. This analysis is
crucial for understanding which innovations provide the most
significant benefits and guides future development priorities.
As shown in Figure 6, each component contributes meaning-
fully to overall system performance with minimal computa-
tional overhead. The dramatic impact of constraint enforce-
ment on schematic hallucination rates and the dual analysis
benefits for logical hallucination demonstrate the effectiveness
of our integrated approach.

Dual Static-Dynamic Analysis Impact. The comparison
between SEMANTICFORGE and SEMANTICFORGE-Static re-
veals that dynamic trace augmentation provides substantial

21

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 8: Overall performance comparison on REPOKG-50. Best results in bold, second-best underlined. Statistical significance
(p < 0.05) marked with *.

System Functional Correctness Hallucination Rates Efficiency
Pass@1 Pass@5 Pass@10 LHR ↓ SHR ↓ Latency (s) Memory (GB)

Code-Llama-34B 34.2% 52.8% 61.4% 42.1% 38.7% 2.3 12.4
StarCoder-15B 29.8% 48.2% 55.9% 45.3% 41.2% 1.8 8.2
GPT-4-Code 41.7% 63.2% 71.8% 35.4% 29.3% 4.1 -

RepoCoder 38.9% 58.4% 67.1% 38.7% 32.1% 3.2 15.8
CodePlan 42.3% 61.9% 70.4% 33.8% 31.5% 5.7 18.3
RAG-Code 40.1% 59.7% 68.3% 36.2% 30.8% 2.9 14.1

GraphCodeBERT 35.7% 54.3% 63.2% 40.3% 35.9% 2.1 11.7
UniXcoder 37.4% 56.8% 65.5% 38.9% 33.4% 2.4 13.2
CodeT5+ 39.2% 58.1% 66.7% 37.1% 32.7% 2.6 14.5

SEMANTICFORGE 49.8%* 71.4%* 79.3%* 23.1%* 14.7%* 2.4 13.9

Table 9: Detailed component ablation results with statistical significance testing. All differences vs. full SEMANTICFORGE are
statistically significant (p < 0.001).

Configuration Pass@1 Pass@5 Pass@10 LHR SHR

SEMANTICFORGE (Full) 49.8% 71.4% 79.3% 23.1% 14.7%

SEMANTICFORGE-Static 42.5% (-7.3%) 64.1% (-7.3%) 71.8% (-7.5%) 35.5% (+12.4%) 16.2% (+1.5%)
SEMANTICFORGE-NoCons 40.9% (-8.9%) 62.3% (-9.1%) 70.1% (-9.2%) 25.8% (+2.7%) 31.2% (+16.5%)
SEMANTICFORGE-NoPlanner 43.6% (-6.2%) 65.7% (-5.7%) 73.9% (-5.4%) 28.4% (+5.3%) 18.9% (+4.2%)
SEMANTICFORGE-NoMaint 45.7% (-4.1%) 67.8% (-3.6%) 75.6% (-3.7%) 24.7% (+1.6%) 16.1% (+1.4%)

Static + NoCons 35.2% (-14.6%) 56.8% (-14.6%) 64.3% (-15.0%) 38.9% (+15.8%) 34.7% (+20.0%)
Base Code-Llama 34.2% (-15.6%) 52.8% (-18.6%) 61.4% (-17.9%) 42.1% (+19.0%) 38.7% (+24.0%)

benefits: 7.3% improvement in Pass@1 and 12.4% reduction
in logical hallucination rate. This validates our hypothesis that
runtime information captures semantic relationships invisible
to static analysis alone. The effect is particularly pronounced
for repositories with polymorphic code patterns where static
analysis cannot resolve call targets.

Deep Analysis: Dynamic traces provide the most benefit
for data processing repositories (9.2% improvement) where
method dispatch is often data-dependent, and least benefit for
system utilities (4.1% improvement) where control flow is typ-
ically explicit. This pattern supports our theoretical framework
that dynamic analysis helps most when static analysis is fun-
damentally limited.

Constraint Enforcement Critical Value. Removing SMT-
guided constraint checking (SEMANTICFORGE-NoCons)
causes the most dramatic performance degradation: 8.9%
reduction in Pass@1 and a catastrophic 16.5% increase in
schematic hallucination rate. This represents a 112% relative
increase in constraint violations, demonstrating that constraint
enforcement is not merely helpful but essential for reliable
code generation.

Error Analysis: Without constraint enforcement, 47% of
generated solutions contain type mismatches, 23% have sig-
nature violations, and 18% have visibility errors. The SMT-

guided decoder eliminates 89% of these errors while adding
only 0.2s average latency (8.3% overhead). This cost-benefit
analysis strongly justifies the architectural complexity of con-
straint integration.

Neural Query Planning Contribution. Replacing learned
query planning with traditional BM25-based retrieval
(SEMANTICFORGE-NoPlanner) reduces Pass@1 by 6.2% and
increases both hallucination types. Statistical analysis reveals
that the neural planner achieves 73% precision in selecting
relevant context compared to 51% for keyword-based retrieval
(p < 0.001, χ2 test).

Context Quality Analysis: The neural planner identifies
2.3× more transitive dependencies and 1.8× more architec-
tural constraints per query compared to traditional retrieval.
This improved context quality directly translates to better gen-
eration outcomes, particularly for tasks requiring understand-
ing of cross-module relationships.

Continual Maintenance System Impact. Testing with stale
knowledge graphs (SEMANTICFORGE-NoMaint) on reposito-
ries modified within the past 30 days shows 4.1% degradation
in Pass@1. While seemingly modest, this effect compounds
over time: repositories with > 100 commits since graph con-

22

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Se
man

tic
For

ge
(Fu

ll)
SF

-St
ati

c

SF
-NoC

on
s

SF
-NoP

lan
ne

r

SF
-NoM

ain
t

Sta
tic

+NoC
on

s
Base

Cod
e-L

lam
a

0

10

20

30

40

50

60

Pa
ss

@
1

(%
)

49.8%

42.5% 40.9%
43.6%

45.7%

35.2% 34.2%

* * * *

* *

Constraint enforcement
most critical

(a) Pass@1 Performance Across Configurations

Se
man

tic
For

ge
(Fu

ll)
SF

-St
ati

c

SF
-NoC

on
s

SF
-NoP

lan
ne

r

SF
-NoM

ain
t

Sta
tic

+NoC
on

s
Base

Cod
e-L

lam
a

0

5

10

15

20

25

30

35

40

45

Sc
he

m
at

ic
 H

al
lu

ci
na

ti
on

 R
at

e
(%

)

14.7%
16.2%

31.2%

18.9%
16.1%

34.7%

38.7%

*

*

*
*

*
*

112% relative
increase

(b) Schematic Hallucination Rates by Component

Se
man

tic
For

ge
(Fu

ll)
SF

-St
ati

c

SF
-NoC

on
s

SF
-NoP

lan
ne

r

SF
-NoM

ain
t

Sta
tic

+NoC
on

s
Base

Cod
e-L

lam
a

0

10

20

30

40

50

Lo
gi

ca
l H

al
lu

ci
na

ti
on

 R
at

e
(%

)

23.1%

35.5%

25.8%
28.4%

24.7%

38.9%
42.1%

*

*
*

*

*
*

(c) Logical Hallucination Rates by Component

Se
man

tic
For

ge
(Fu

ll)
SF

-St
ati

c

SF
-NoC

on
s

SF
-NoP

lan
ne

r

SF
-NoM

ain
t

Sta
tic

+NoC
on

s
Base

Cod
e-L

lam
a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(s
ec

on
ds

)

2.5s

1.8s

2.3s
2.2s

2.4s

1.7s 1.7s

(d) Generation Latency Breakdown

SemanticForge (Full) Component Ablations Baseline Systems p<0.001

Figure 6: Component ablation results for SEMANTICFORGE. (a) Pass@1 performance across seven configurations with 95%
confidence intervals. (b) Schematic hallucination rates (SHR) by configuration. (c) Logical hallucination rates (LHR) by
configuration. (d) Generation latency in seconds. Configurations include the full system, four single-component ablations
(SF-Static, SF-NoCons, SF-NoPlanner, SF-NoMaint), one combined ablation (Static+NoCons), and baseline Code-Llama.
Statistical significance markers (∗) indicate p < 0.001 compared to the full system.

struction show 12.7% degradation, highlighting the critical im-
portance of continual adaptation.

Component Interaction Effects. The combined component
ablation (SEMANTICFORGE without both static-dynamic dual
analysis and constraint enforcement) shows super-additive
degradation (14.6% vs. 7.3% + 8.9% = 16.2%), indicating pos-
itive interaction between components. Dynamic traces inform
constraint extraction, while constraint enforcement validates
the semantic relationships captured in dynamic analysis.

Computational Cost-Benefit Analysis. Each component’s
computational overhead is justified by performance gains:

• Dynamic analysis: +0.8s construction time → +7.3%
Pass@1

• Constraint enforcement: +0.2s generation time→ -16.5%

error rate

• Neural planning: +0.3s query time→ +6.2% Pass@1

• Maintenance system: +0.1s incremental updates → sus-
tained performance

Key Findings Summary. Our component ablation analy-
sis reveals critical insights: (1) Dynamic analysis contributes
+7.3% Pass@1 improvement by capturing runtime seman-
tics invisible to static analysis, (2) Constraint enforcement re-
duces error rates by 16.5% absolute (112% relative reduction
in schematic hallucinations), (3) Neural planning adds +6.2%
Pass@1 through improved context selection, and (4) Each
component demonstrates statistical significance (p < 0.001)
with large effect sizes. This component ablation analysis con-
clusively demonstrates that each SEMANTICFORGE compo-
nent provides substantial, statistically significant benefits that

23

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 10: Detailed hallucination breakdown by category. Val-
ues show error rates with reduction percentages vs. GPT-4 in
parentheses.

Error Category GPT-4 SEMANTICFORGE

Schematic Hallucination
Type Mismatches 15.2% 6.8% (↓55.3%)
Signature Violations 8.7% 3.2% (↓63.2%)
Visibility Errors 3.4% 1.1% (↓67.6%)
Import Issues 2.0% 0.3% (↓85.0%)

Logical Hallucination
Control Flow Errors 12.8% 8.4% (↓34.4%)
Data Flow Errors 14.1% 9.7% (↓31.2%)
API Misuse 6.3% 3.1% (↓50.8%)
State Management 2.2% 1.9% (↓13.6%)

justify the architectural complexity. The results validate our
design decisions and provide clear guidance for practition-
ers considering which components to implement in resource-
constrained environments.

10.3 Hallucination Analysis

We provide detailed analysis of the hallucination phenomena
that SEMANTICFORGE addresses, demonstrating significant
improvements in code reliability.

Schematic Hallucination Elimination. Our constraint-
based decoder achieves remarkable reductions in schematic
errors: 85% reduction in import issues, 67.6% reduction in
visibility errors, and 63.2% reduction in signature violations.
These improvements directly translate to higher compilation
success rates and reduced developer debugging effort.

Logical Hallucination Mitigation. While more challenging
to eliminate completely, our dual static-dynamic knowledge
graph reduces logical errors significantly: 50.8% reduction in
API misuse and 34.4% reduction in control flow errors. The
dynamic traces provide crucial runtime semantics that help
models understand correct usage patterns.

10.4 Scalability Analysis

We evaluate SEMANTICFORGE’s performance across reposi-
tories of varying sizes to demonstrate practical scalability for
real-world deployment.

Performance Stability. Pass@1 performance remains sta-
ble (48.2%-51.4%) across repository sizes from 10K to 500K
lines of code, demonstrating that our approach scales without
quality degradation. Slight improvements for larger reposito-
ries may reflect richer knowledge graphs providing better con-
text.

10K50K100K 200K 350K 500K
Repository Size (LOC)

46

48

50

52

54

Pa
ss

@
1

(%
)

(a) Generation Quality

10K50K100K 200K 350K 500K
Repository Size (LOC)

0.0

0.1

0.2

0.3

0.4

0.5

Q
ue

ry
 L

at
en

cy
 (

s)

(b) Query Performance

Actual
O(n^0.73) fit

10K50K100K 200K 350K 500K
Repository Size (LOC)

11

12

13

14

15

16

17

M
em

or
y

U
sa

ge
 (

G
B)

(c) Memory Consumption

Actual
Linear fit

10K50K100K 200K 350K 500K
Repository Size (LOC)

0

10

20

30

40

50

Co
ns

tr
uc

ti
on

 T
im

e
(s

)

(d) KG Construction

Actual
O(n log n) fit

Scalability Analysis Across Repository Sizes

Figure 7: Scalability analysis showing system performance
across repository sizes. (a) Generation quality (Pass@1) re-
mains stable across scales. (b) Query latency grows sub-
linearly with repository size. (c) Memory usage scales ap-
proximately linearly. (d) Knowledge graph construction time
shows expected O(n log n) complexity.

Computational Efficiency. Query latency grows sub-
linearly with repository size (R2 = 0.89 forO(n0.73) fit), con-
firming the effectiveness of our indexing and caching strate-
gies. Memory usage scales approximately linearly (R2 =
0.94), remaining practical even for large repositories.

Graph Construction Overhead. Initial knowledge graph
construction shows expected O(n log n) complexity, taking 5-
47 seconds for repositories in our size range. Incremental up-
dates maintain sub-second response times, enabling real-time
development workflows.

10.5 Cross-Repository Generalization Results

Our cross-repository evaluation reveals strong generalization
capabilities while identifying important adaptation require-
ments for diverse architectural patterns.

Architectural Transfer Analysis. The average Architec-
tural Transfer Coefficient of 0.91 indicates strong cross-
repository generalization, with only 4.3% average perfor-
mance degradation when applying models trained on differ-
ent architectural patterns. System utilities show the strongest
transfer (0.95), likely due to their procedural patterns appear-
ing across many repository types. Web frameworks and sci-
entific computing show slightly lower transfer, reflecting their
more specialized architectural constraints.

24

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 11: Cross-repository generalization results using leave-one-cluster-out validation. Performance degradation compared to
within-cluster training.

Target Cluster Within-Cluster Cross-Cluster Degradation Transfer Coeff.

Web Frameworks 52.8±2.3% 47.1±2.8% 5.7% 0.89
Data Processing 48.1±2.2% 44.3±2.6% 3.8% 0.92
Object-Oriented Libs 50.4±2.1% 46.2±2.5% 4.2% 0.92
Scientific Computing 47.9±2.5% 42.8±3.1% 5.1% 0.89
System Utilities 51.7±2.4% 48.9±2.7% 2.8% 0.95

Average 50.2±1.1% 45.9±1.3% 4.3% 0.91

Table 12: Performance breakdown by repository domain with architectural pattern analysis. Pass@1 results with 95% confi-
dence intervals.

Domain GPT-4 SEMANTICFORGE Improvement Pattern Complexity

Web Frameworks 43.2±2.1% 52.8±2.3% +9.6% High
Data Processing 39.8±2.4% 48.1±2.2% +8.3% Medium
Object-Oriented Libs 41.5±2.0% 50.4±2.1% +8.9% High
System Utilities 42.1±2.6% 51.7±2.4% +9.6% Medium
Scientific Computing 40.3±2.3% 47.9±2.5% +7.6% Low

Knowledge Graph Semantic Overlap. Analysis of seman-
tic overlap between repository clusters reveals interesting pat-
terns. The average Semantic Overlap Index ranges from 0.34
(scientific computing vs. web frameworks) to 0.67 (object-
oriented libraries vs. system utilities). Higher semantic over-
lap correlates strongly with better cross-repository perfor-
mance (r=0.84, p < 0.01), validating our knowledge graph
representation approach.

Domain Adaptation Efficiency. Few-shot adaptation with
just 25-50 target domain examples recovers 89% of full-
adaptation performance on average, demonstrating practical
deployment feasibility. Zero-shot performance maintains 91%
of within-cluster performance, indicating that our semantic
representations capture fundamental programming patterns
that generalize across architectural styles.

10.6 Domain-Specific Performance
Analysis across different repository domains reveals consistent
improvements while highlighting domain-specific challenges
and architectural pattern dependencies.

Pattern Complexity Correlation. Domains with higher
architectural pattern complexity (web frameworks, object-
oriented libraries) show larger improvements, validating our
hypothesis that explicit semantic representation provides
greater benefits for structurally complex codebases. The cor-
relation between pattern complexity and improvement magni-
tude is r=0.78 (p < 0.05).

Constraint Type Distribution. Analysis of constraint vio-
lation patterns reveals domain-specific characteristics: web

frameworks suffer primarily from signature violations (47%
of errors), scientific computing from type mismatches (52%
of errors), and system utilities from visibility violations (38%
of errors). SEMANTICFORGE’s constraint-aware generation
adapts effectively to these domain-specific error patterns.

10.7 Human Evaluation Results

Professional developer evaluation provides crucial insights
into code quality aspects difficult to capture through automated
metrics.

Overall Quality Assessment. Human evaluators rated SE-
MANTICFORGE solutions significantly higher (4.2/5.0) than
baseline systems (GPT-4: 3.6/5.0, CodePlan: 3.4/5.0) on over-
all code quality (p < 0.001, t-test). Evaluators particularly
praised integration appropriateness and adherence to reposi-
tory conventions.

Error Correction Effort. When solutions contained errors,
SEMANTICFORGE errors required significantly less correction
effort: 68% were classified as trivial fixes versus 41% for
GPT-4-Code. This reflects our constraint enforcement pre-
venting complex schematic errors that require architectural un-
derstanding to fix.

Preference Rankings. In head-to-head comparisons, evalu-
ators preferred SEMANTICFORGE solutions in 73% of cases,
with particular advantages cited for: ”better integration with
existing code” (89% of evaluators), ”fewer obvious bugs”
(82%), and ”more appropriate API usage” (77%).

25

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 13: Detailed computational overhead breakdown by system component with variance. Times represent mean ± 95% CI
over 4,250 tasks. Overhead percentages calculated relative to base Code-Llama-34B generation.

Component Time (s) Memory (GB) Overhead (%) Scaling

Base Code-Llama 1.70 ± 0.12 11.2 ± 0.3 - O(n)
Knowledge Graph Query 0.31 ± 0.08 1.8 ± 0.2 18.2% O(log n)
Context Preparation 0.19 ± 0.04 0.3 ± 0.1 11.2% O(k)
SMT Constraint Checking 0.23 ± 0.06 0.7 ± 0.1 13.5% O(c + —y—)
Maintenance Updates 0.07 ± 0.02 0.2 ± 0.1 4.1% O(∆ log n)

Total SEMANTICFORGE 2.50 ± 0.18 14.2 ± 0.5 47.1% -

10.8 Detailed Computational Overhead Analy-
sis

We conduct comprehensive analysis of computational costs to
demonstrate the practical viability of our approach and guide
deployment decisions across different resource constraints.

Measurement Methodology. All timing measurements fol-
low rigorous protocols to ensure reproducibility and ac-
curacy. We measure wall-clock time using Python’s
time.perf counter() with nanosecond precision, av-
eraged over 100 runs per task on warmed-up systems
(5 warm-up runs discarded). Each component is pro-
filed independently using context managers that isolate its
specific contribution. Memory consumption is measured
via nvidia-smi for GPU memory (100ms sampling)
and psutil.Process().memory info() for system
RAM, reporting peak values. We exclude model loading time
(one-time cost) but include all query processing, graph opera-
tions, and generation steps. Variance is reported as 95% confi-
dence intervals via bootstrap resampling (1000 samples).

Component-Level Performance Analysis. Our 47.1% to-
tal overhead is dominated by knowledge graph infrastructure
(18.2%) and constraint verification (13.5%). Critically, both
components exhibit sub-linear scaling properties that improve
relative performance as repository size increases. The mainte-
nance system adds minimal overhead (4.1%) while providing
essential adaptation capabilities.

Cross-System Latency Comparison Methodology. To en-
sure fair latency comparisons in Table 8, we implement con-
sistent measurement protocols across all baselines. For RAG-
based systems (Code-Llama, StarCoder, RAG-Code), we mea-
sure total time including retrieval, encoding, and generation.
For CodePlan, we measure end-to-end time including task de-
composition (GPT-3.5 call) and all subtask generations. For
GPT-4-Code, we measure API call latency including network
overhead and server-side processing. All measurements ex-
clude one-time costs (model loading, index construction) but
include per-request processing. Each system is run 100 times
per task with median reported to avoid network variance for
API-based systems. The confidence intervals in Table 8 reflect
variation across tasks, not measurement noise.

Scaling Characteristics and Performance Modeling.
Knowledge Graph Query Performance: Query latency
follows O(log n) complexity due to optimized indexing
strategies. For repositories from 10K to 500K LOC, query
time scales from 0.15s to 0.42s, representing decreasing
relative overhead (15% to 12%) as repository size increases.
This counter-intuitive improvement reflects the fact that larger
repositories contain more diverse context, improving cache hit
rates and amortizing index construction costs.

Constraint Verification Scaling: SMT solver performance
exhibits O(c + —y—) complexity where c is the number
of active constraints and —y— is the generated sequence
length. Our incremental solving strategy maintains near-
constant overhead regardless of repository size. For typical
generation tasks (50-200 tokens), constraint checking time re-
mains 0.18-0.28s across all repository sizes tested.

Memory Usage Optimization: Memory scaling analysis
reveals three distinct scaling regimes:

• Small repositories (< 50K LOC): 12.4-13.1GB total,
dominated by model weights

• Medium repositories (50K-200K LOC): 13.1-14.8GB to-
tal, linear knowledge graph growth

• Large repositories (> 200K LOC): 14.8-16.2GB total,
sublinear growth due to graph compression

Hardware Resource Utilization. We profile hardware uti-
lization using NVIDIA Nsight Systems for GPU metrics and
Linux perf for CPU analysis, sampling at 10ms intervals
across 500 representative tasks. Results reveal efficient re-
source usage: 89% average GPU compute utilization during
code generation (1.70s), 12% during knowledge graph queries
(CPU-bound, 0.31s), and 67% during constraint verification
(mixed workload, 0.23s). CPU utilization peaks at 78% dur-
ing graph query execution (parallel traversal) and averages
34% during SMT solving (single-threaded bottleneck). Mem-
ory bandwidth utilization averages 62% during generation and
23% during graph operations, indicating room for further op-
timization. These profiles inform deployment: GPU-heavy
workloads benefit from model parallelism, while graph-heavy
workloads scale with CPU cores.

26

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Optimization Impact Analysis. We measure the effective-
ness of our optimization strategies through controlled ablation
where each optimization is disabled independently and perfor-
mance re-measured:

• Query result caching: 34% latency reduction (0.47s →
0.31s), 73% cache hit rate measured across 1000-task se-
quences simulating developer sessions

• Incremental SMT solving: 67% constraint verification
speedup (0.69s → 0.23s) vs. naive per-beam full solv-
ing, measured on 500 constraint-heavy tasks

• Graph compression: 43% memory reduction (2.5GB →
1.4GB graph storage) with < 2% query performance
degradation (0.30s → 0.31s), validated on 200K+ LOC
repositories

• Predictive prefetching: 28% perceived latency reduc-
tion during interactive sessions, measured via user study
(n=12 developers, 50 tasks each)

Real-World Deployment Scenarios. We model computa-
tional requirements for three deployment scenarios:

Individual Developer Setup: Single NVIDIA RTX 4090
(24GB) can handle repositories up to 200K LOC with 2.1s
average latency. Memory-optimized configurations support up
to 350K LOC with 3.2s latency using model quantization and
graph streaming.

Team Development Server: Server-grade hardware (4×
A100, 256GB RAM) supports concurrent access for 8-12 de-
velopers with < 3s response times. Load balancing across
GPUs enables 45-60 requests/minute sustained throughput.

Enterprise Cloud Deployment: Distributed deployment
across 16 A100 nodes supports 200+ concurrent developers
with auto-scaling based on demand patterns. Average response
time < 2.5s at 95th percentile during peak usage periods.

Energy Efficiency Analysis. SEMANTICFORGE consumes
187J per generation task (vs. 142J for base Code-Llama), rep-
resenting 32% energy overhead. However, the 15.6% improve-
ment in Pass@1 over base Code-Llama reduces debugging it-
erations, resulting in net 23% energy savings per successful
implementation when accounting for developer iteration pat-
terns.

Cost-Benefit Optimization. ROI analysis reveals break-
even points for different deployment scenarios:

• Individual developers: Positive ROI after 120 hours of
usage (typical: 2-3 months)

• Small teams (5-10 developers): Positive ROI after 60
hours of collective usage (typical: 3-4 weeks)

• Enterprise teams (50+ developers): Positive ROI after
200 hours of collective usage (typical: 1-2 weeks)

This comprehensive computational analysis demonstrates
that SEMANTICFORGE’s benefits justify its overhead across
realistic deployment scenarios, with particularly strong value
propositions for team and enterprise environments.

10.9 Error Analysis and Failure Cases
We analyze remaining failure cases to understand system lim-
itations and guide future improvements.

Persistent Logical Errors. Complex algorithmic tasks re-
quiring multi-step reasoning still challenge the system, par-
ticularly when the correct approach differs significantly from
training data patterns. Dynamic traces help but cannot fully
compensate for insufficient algorithmic understanding.

Novel API Usage. When repositories use recently-
introduced APIs not represented in training data, both retrieval
and generation quality decline. The maintenance system
partially addresses this through incremental updates, but
fundamental model limitations remain.

Cross-Language Dependencies. Repositories with mixed-
language components (Python calling C extensions, JavaScript
frontends) present challenges for our primarily Python-
focused analysis. Future work should extend knowledge graph
construction to multi-language scenarios.

Complex Refactoring Tasks. Large-scale refactoring re-
quiring simultaneous changes across many files sometimes ex-
ceeds the context window limits and constraint complexity
thresholds. Hierarchical approaches may address these limi-
tations.

These comprehensive results demonstrate SEMANTIC-
FORGE’s significant advances in repository-level code gener-
ation while identifying important directions for continued re-
search and development.

11 Discussion and Limitations

This section provides critical analysis of SEMANTICFORGE’s
contributions, examines the broader implications of our ap-
proach, and honestly assesses the limitations that constrain its
applicability. We discuss the generalizability of our findings
and identify important directions for future research.

11.1 Key Contributions and Impact
SEMANTICFORGE represents a fundamental shift from
pattern-matching-based code generation to semantically-
aware synthesis. Our results demonstrate that explicit repos-
itory knowledge graphs, when combined with learned query
planning and constraint-aware decoding, can significantly re-
duce the hallucination phenomena that limit current LLM-
based development tools.

27

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Theoretical Contributions. We formalize the repository-
level code generation problem and provide the first compre-
hensive taxonomy of hallucination types in code generation.
Our mathematical framework establishes theoretical founda-
tions for knowledge graph-guided generation while proving
complexity bounds for each system component. The constraint
satisfaction formulation enables principled analysis of genera-
tion correctness.

Systems Contributions. The integration of SMT solvers
into neural beam search represents a novel architectural ap-
proach that guarantees constraint satisfaction without sacrific-
ing generation quality. Our incremental maintenance system
demonstrates how knowledge graphs can remain synchronized
with evolving codebases at practical computational costs. The
dual static-dynamic representation provides a new paradigm
for capturing repository semantics.

Empirical Impact. The 49.8% reduction in schematic hal-
lucination and 34.7% reduction in logical hallucination trans-
late to substantial developer productivity gains. Eliminating
type errors, signature mismatches, and import issues reduces
debugging effort and increases confidence in generated code.
The 15.6% improvement in functional correctness over base
Code-Llama enables more ambitious automated development
tasks.

11.2 Generalizability Analysis
While our evaluation focuses on Python repositories, the un-
derlying principles of SEMANTICFORGE extend to other pro-
gramming paradigms and development contexts, though with
varying degrees of adaptation required.

Multi-Language Extension Roadmap. Our analysis re-
veals a clear path for extending SEMANTICFORGE to addi-
tional programming languages, with different languages pre-
senting distinct opportunities and challenges. Recent multi-
language code generation efforts [33, 12, 1, 2] provide impor-
tant foundations for this extension:

Statically-Typed Languages (Java, C++, TypeScript):
These languages offer significant advantages for SEMANTIC-
FORGE deployment. Explicit type information enables more
precise constraint extraction, reducing the 14.7% schematic
hallucination rate we observe in Python to an estimated 8-
12%. PolyCoder’s evaluation [33] across 12 programming
languages shows that static typing improves model accuracy
by 8-15%, supporting our hypothesis. The rich type systems
provide stronger semantic foundations for knowledge graph
construction. However, complex generics systems (C++ tem-
plates, Java wildcards) require sophisticated constraint model-
ing to capture type relationships accurately.

Implementation Strategy: We propose a three-phase roll-
out building on multi-language parsing infrastructure: (1) Ex-
tend static analysis using language-specific parsers (Tree-sitter
for C++, JavaParser for Java, TypeScript Compiler API), (2)
Adapt constraint types to language-specific features (memory

management for C++, checked exceptions for Java), and (3)
Integrate with language-specific testing frameworks for dy-
namic analysis. The MultiPL-E framework [2] provides valu-
able translation infrastructure that could bootstrap our cross-
language knowledge graph construction.

Dynamically-Typed Languages (JavaScript, Ruby,
PHP): These present greater challenges due to limited static
type information. Our preliminary analysis suggests perfor-
mance degradation of 15-25% compared to Python results.
However, several mitigation strategies show promise: (1)
TypeScript adoption patterns provide type hints for JavaScript,
(2) Runtime type inference through execution profiling, and
(3) Gradual typing systems (Flow for JavaScript, Sorbet for
Ruby) enable hybrid static-dynamic analysis. CodeSearch-
Net’s multi-language dataset [12] covering six languages
could serve as a foundation for training multi-language query
planners.

Functional Languages (Haskell, OCaml, Scala): The
strong type systems and immutability constraints in functional
languages align well with our constraint satisfaction approach.
Type-level programming features require extended constraint
languages but may enable even stronger semantic guarantees.
Pattern matching and algebraic data types provide rich struc-
tural information for knowledge graph construction.

Cross-Language Integration: Modern repositories in-
creasingly involve multiple languages. We identify three in-
tegration patterns: (1) Foreign Function Interfaces (FFI) re-
quiring cross-language type mapping, (2) Service boundaries
with API contracts, and (3) Build system dependencies. A
unified knowledge graph representation could capture these
relationships, enabling repository-level reasoning across lan-
guage boundaries. Recent work on multi-lingual evaluation
[1] demonstrates the feasibility of unified semantic represen-
tations across language barriers, suggesting our knowledge
graph approach could extend naturally to polyglot codebases.

Domain Adaptability. The architectural patterns captured
in our knowledge graphs reflect common software engineer-
ing practices that span domains. Web development, data pro-
cessing, and system programming all benefit from understand-
ing dependency relationships and API constraints. However,
highly specialized domains require targeted extensions:

Embedded Systems: Require resource constraints (mem-
ory, power, real-time), hardware abstraction layer modeling,
and interrupt-driven control flow patterns.

Financial Systems: Need precision arithmetic constraints,
regulatory compliance patterns, and audit trail requirements.

Scientific Computing: Benefit from numerical stability
constraints, performance modeling, and domain-specific li-
braries (NumPy, BLAS) integration.

Scale Considerations. Our scalability analysis demon-
strates effectiveness up to 500K lines of code, covering most
organizational repositories. However, massive monorepos (>
10M LOC) require architectural innovations: (1) Hierarchical
knowledge graphs with module-level abstractions, (2) Feder-

28

Journal of Emerging Applied Artificial Intelligence (JEAAI)

ated query planning across repository boundaries, and (3) Dis-
tributed constraint solving for large-scale generation tasks.

Development Workflow Integration. SEMANTICFORGE
assumes development environments with comprehensive test
suites and stable APIs. Organizations with poor testing prac-
tices or rapidly changing architectures may see reduced ben-
efits from dynamic analysis and constraint enforcement. We
propose adaptation strategies: (1) Property-based testing inte-
gration for coverage improvement, (2) API stability analysis
for architecture change detection, and (3) Gradual adoption
paths for legacy codebases.

11.3 Fundamental Limitations

Despite significant advances, SEMANTICFORGE faces several
fundamental limitations that constrain its applicability and ef-
fectiveness.

Algorithmic Reasoning Limitations. While our system ex-
cels at structural integration and constraint satisfaction, it in-
herits the algorithmic reasoning limitations of underlying lan-
guage models. Complex logical problems requiring multi-
step reasoning, mathematical derivations, or novel algorithmic
insights remain challenging. The knowledge graph provides
context but cannot substitute for deep algorithmic understand-
ing.

Example: When asked to implement a novel graph algo-
rithm, SEMANTICFORGE can correctly identify relevant data
structures and API patterns but may struggle with the core al-
gorithmic logic if it differs significantly from training exam-
ples.

Creative Design Limitations. Repository knowledge
graphs capture existing patterns but may constrain creative
architectural decisions. The system tends to perpetuate
established patterns rather than proposing innovative designs.
This conservatism improves integration consistency but may
limit architectural evolution.

Training Data Dependencies. Like all learning-based sys-
tems, SEMANTICFORGE is limited by its training data. Repos-
itories using cutting-edge frameworks, novel programming
patterns, or domain-specific APIs may receive suboptimal sup-
port. While the maintenance system addresses this partially,
fundamental knowledge gaps require model retraining.

Context Window Constraints. Despite efficient query
planning, very large development tasks may exceed practi-
cal context limits. Complex refactoring operations affecting
dozens of files simultaneously challenge both the planning
system and the generation model. Hierarchical approaches
may address this but remain unexplored.

11.4 Computational and Practical Limitations
Real-world deployment of SEMANTICFORGE faces several
practical constraints that affect its adoption and effectiveness.

Infrastructure Requirements. The system requires sub-
stantial computational resources: 40GB GPU memory for gen-
eration, significant CPU resources for graph construction, and
storage for knowledge graphs. These requirements may limit
adoption in resource-constrained environments or small devel-
opment teams.

Setup and Maintenance Overhead. Initial repository anal-
ysis requires 5-47 seconds depending on size, creating friction
for new project adoption. The knowledge graph maintenance
system, while incremental, adds complexity to development
workflows. Organizations must weigh these costs against pro-
ductivity benefits.

SMT Solver Limitations. Our constraint enforcement relies
on SMT solver capabilities, which can be overwhelmed by
complex constraint sets or exhibit unpredictable performance
on certain problem types. The 100ms timeout prevents block-
ing but may allow constraint violations in edge cases.

Test Suite Dependencies. Dynamic analysis effectiveness
correlates strongly with test suite quality and coverage. Repos-
itories with poor testing practices receive limited benefits from
our dual static-dynamic approach. This creates a barrier for
adoption in organizations with immature testing cultures.

11.5 Ethical and Safety Considerations
The deployment of advanced code generation systems raises
important ethical considerations that must be addressed re-
sponsibly.

Code Quality and Reliability. While SEMANTICFORGE
significantly reduces hallucination rates, it cannot eliminate all
errors. Developers must maintain critical evaluation of gen-
erated code, particularly for security-sensitive applications.
Over-reliance on automated generation could lead to decreased
code review rigor.

Intellectual Property Concerns. Knowledge graphs con-
structed from proprietary codebases may inadvertently expose
internal architectural patterns or business logic. Organizations
must carefully consider the privacy implications of compre-
hensive code analysis and ensure appropriate access controls.

Developer Skill Evolution. Highly effective code genera-
tion tools may impact developer skill development, particu-
larly for junior programmers who rely heavily on automated
assistance. Balancing productivity gains with skill develop-
ment remains an important challenge for the software engi-
neering community.

29

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Bias Amplification. Repository knowledge graphs neces-
sarily reflect the patterns and conventions of their source code-
bases. If these repositories contain biased or suboptimal pat-
terns, SEMANTICFORGE may perpetuate and amplify these
issues. Regular audit and pattern analysis can help identify
problematic trends.

11.6 Comparison with Contemporary Ap-
proaches

Recent advances in repository-level code generation provide
important context for evaluating SEMANTICFORGE’s contri-
butions.

Agent-Based Systems. Contemporary systems like SWE-
agent and CodeAgent employ iterative refinement through en-
vironmental feedback. While these approaches can handle
complex multi-step tasks, they suffer from higher latency and
computational costs. SEMANTICFORGE’s constraint-aware
generation often produces correct solutions in a single pass,
offering better efficiency for well-defined tasks.

Planning-Based Approaches. Systems like CodePlan de-
compose complex tasks into sequences of simpler operations.
This approach complements SEMANTICFORGE’s capabilities
and could potentially be integrated with our knowledge graph
representation. However, planning-based systems typically
lack the constraint enforcement that prevents schematic hal-
lucination.

Retrieval-Augmented Methods. Advanced RAG systems
continue to improve context selection for code generation.
However, these approaches remain fundamentally limited by
their inability to reason about global consistency and archi-
tectural constraints. SEMANTICFORGE’s explicit knowledge
representation provides capabilities that pure retrieval cannot
match.

11.7 Future Research Directions
Our work opens several promising avenues for future research
in repository-level code generation and automated software
development. These directions build naturally on our findings
while addressing broader challenges in the field.

Multi-Language Extension. The most immediate exten-
sion involves adapting SEMANTICFORGE to additional
programming languages. Recent multi-language bench-
marks—PolyCoder’s 12-language evaluation [33], Code-
SearchNet’s 6-language corpus [12], and MultiPL-E’s poly-
glot test suite [2]—provide crucial infrastructure for this effort.
Statically-typed languages like Java and TypeScript present
opportunities for enhanced constraint extraction through ex-
plicit type information, potentially reducing schematic hal-
lucination rates below our current 14.7%. Dynamic lan-
guages pose different challenges, requiring sophisticated run-
time analysis and gradual typing integration. Cross-language

knowledge graphs for polyglot repositories represent a partic-
ularly compelling direction, enabling unified reasoning about
system-wide architectural constraints. The multi-lingual eval-
uation framework of Athiwaratkun et al. [1] suggests that
semantic representations can transfer across language bound-
aries with modest adaptation.

Security-Aware Code Generation. Integrating security
vulnerability patterns and compliance rules into constraint lan-
guages represents a critical next step. Future work could de-
velop domain-specific constraint types for vulnerability pre-
vention, regulatory compliance, and industry-specific security
standards. This direction promises significant practical impact
given the growing importance of secure-by-construction soft-
ware development.

Performance-Optimized Generation. Incorporating com-
putational complexity analysis and performance characteris-
tics into knowledge graphs could enable generation systems
that consider algorithmic efficiency, memory usage patterns,
and distributed system implications. This extension would ad-
dress the growing need for performance-aware automated de-
velopment tools in resource-constrained environments.

Collaborative Development Integration. Extending SE-
MANTICFORGE to multi-developer environments presents in-
teresting challenges in conflict prediction, team expertise mod-
eling, and collaborative context selection. Knowledge graphs
could capture team dynamics and expertise distribution, en-
abling more effective task allocation and code review assis-
tance.

Architectural Evolution Assistance. Beyond code genera-
tion, knowledge graphs could support proactive architecture
improvement through code smell detection, design pattern rec-
ommendations, and architectural debt assessment. This direc-
tion aligns with the broader trend toward AI-assisted software
architecture and design.

Educational Applications. The explicit constraint represen-
tation in SEMANTICFORGE suggests natural applications in
computer science education, including pedagogical constraint
languages that enforce learning objectives and automated as-
sessment of software engineering practices. This could de-
mocratize access to high-quality programming education and
mentorship.

11.8 Implications for Software Engineering

SEMANTICFORGE represents a step toward more sophisti-
cated automated development tools that understand and re-
spect software engineering principles. The explicit represen-
tation of architectural knowledge enables systems that gener-
ate code consistent with established patterns while maintaining
flexibility for innovation.

30

Journal of Emerging Applied Artificial Intelligence (JEAAI)

However, the most significant impact may be in democratiz-
ing access to complex software development capabilities. By
encoding expert knowledge about API usage, architectural pat-
terns, and constraint satisfaction, SEMANTICFORGE enables
less experienced developers to produce higher-quality code
that integrates properly with sophisticated codebases.

The constraint satisfaction approach also suggests new
paradigms for software development where architectural rules
and patterns are explicitly encoded and automatically en-
forced. This could lead to more consistent codebases, reduced
maintenance overhead, and improved software quality across
the industry.

Ultimately, SEMANTICFORGE demonstrates that the com-
bination of symbolic reasoning and neural generation can ad-
dress fundamental limitations of purely learning-based ap-
proaches, pointing toward a future where automated develop-
ment tools are both more capable and more reliable.

12 Conclusion

This paper introduces SEMANTICFORGE, a novel approach
to repository-level code generation that addresses the fun-
damental limitations of current LLM-based systems through
explicit semantic representation and constraint-aware genera-
tion. Our comprehensive evaluation demonstrates significant
advances in both functional correctness and hallucination re-
duction, while establishing new theoretical foundations for un-
derstanding and solving the repository-level code generation
problem.

12.1 Summary of Contributions
We make four primary contributions that advance the state-of-
the-art in automated code generation:

Problem Formalization and Hallucination Taxonomy.
We provide the first formal treatment of repository-level code
generation, establishing mathematical foundations and com-
plexity analysis. Our comprehensive taxonomy of logical and
schematic hallucination provides a principled framework for
understanding and addressing systematic failures in current
code generation systems.

Knowledge Graph-Guided Architecture. The four-stage
SEMANTICFORGE pipeline demonstrates how explicit seman-
tic representation can enable more sophisticated code gen-
eration. Our dual static-dynamic knowledge graphs capture
repository semantics that are invisible to purely pattern-based
approaches, while neural query planning enables efficient con-
text selection at scale.

Constraint-Aware Generation Algorithm. The integration
of SMT solving into neural beam search represents a funda-
mental architectural innovation that guarantees semantic cor-
rectness without sacrificing generation quality. This approach

eliminates schematic hallucination at the source rather than re-
quiring post-hoc correction.

Comprehensive Empirical Evaluation. Our evaluation on
REPOKG-50 establishes new benchmarks for repository-
level code generation assessment. The 49.8% reduction in
schematic hallucination, 34.7% reduction in logical halluci-
nation, and 15.6% improvement in functional correctness over
base Code-Llama demonstrate the practical impact of our ap-
proach.

12.2 Broader Impact
SEMANTICFORGE represents a paradigm shift from pattern-
matching-based code generation to semantically-aware syn-
thesis. This advance has implications beyond immediate pro-
ductivity gains:

Developer Productivity. By dramatically reducing debug-
ging overhead and increasing confidence in generated code,
SEMANTICFORGE enables developers to tackle more ambi-
tious automated development tasks. The elimination of triv-
ial errors allows focus on higher-level design and algorithmic
challenges.

Code Quality and Maintainability. Constraint-aware gen-
eration ensures that automated code follows established archi-
tectural patterns and respects design principles. This leads
to more consistent codebases with reduced maintenance over-
head and improved long-term sustainability.

Democratization of Complex Development. By encoding
expert knowledge about API usage, architectural patterns, and
constraint satisfaction, SEMANTICFORGE enables less experi-
enced developers to work effectively with sophisticated code-
bases. This could help address skill gaps in software engineer-
ing.

Foundation for Advanced Tools. The explicit semantic
representation and constraint satisfaction framework provide
foundations for even more sophisticated development assis-
tance, including architectural evolution, security-aware gen-
eration, and collaborative development support.

12.3 Technical Significance
The technical innovations in SEMANTICFORGE establish im-
portant precedents for the integration of symbolic reasoning
and neural generation:

Hybrid Symbolic-Neural Approaches. Our SMT-guided
beam search demonstrates how formal verification can be
seamlessly integrated into neural generation without pro-
hibitive computational overhead. This opens new possibilities
for constraint-aware AI systems across domains.

31

Journal of Emerging Applied Artificial Intelligence (JEAAI)

Scalable Knowledge Representation. The incremental
maintenance of repository knowledge graphs at O(|∆R|)
complexity shows how explicit semantic representations can
remain practical even for large-scale systems. This scalability
is crucial for real-world deployment.

Learned Context Selection. Neural query planning pro-
vides a general framework for learning to select relevant con-
text from large structured knowledge bases. This approach
could generalize to other domains requiring selective informa-
tion retrieval.

12.4 Limitations and Future Directions

While SEMANTICFORGE achieves significant advances, im-
portant limitations remain:

Algorithmic Reasoning. Complex logical problems requir-
ing multi-step reasoning or novel algorithmic insights continue
to challenge the system. Future work should investigate inte-
gration of symbolic reasoning systems and algorithmic knowl-
edge bases.

Multi-Language Support. Our current focus on Python
limits applicability to mixed-language environments common
in enterprise development. The concrete roadmap in Sec-
tion 11.7 outlines specific milestones for Java, TypeScript, and
cross-language integration.

Creative Design Tasks. The system’s emphasis on consis-
tency and constraint satisfaction may limit creative archi-
tectural exploration. Balancing reliability with innovation
through configurable constraint relaxation represents an im-
portant research direction.

Resource Requirements. The computational and infras-
tructure requirements for SEMANTICFORGE may limit adop-
tion in resource-constrained environments. Our detailed cost-
benefit analysis in Section 10.8 provides guidance for deploy-
ment optimization strategies.

12.5 Research Implications

SEMANTICFORGE’s success suggests several important direc-
tions for future research in automated software development:

Explicit vs. Implicit Knowledge. Our results demonstrate
clear advantages for explicit semantic representation over
purely implicit approaches. This finding has implications for
AI system design beyond code generation, suggesting when
symbolic knowledge should complement learned representa-
tions.

Constraint Integration in Generation. The effectiveness
of SMT-guided decoding indicates that constraint satisfaction
should be a primary consideration in generation system design.
Future work should explore how different constraint types and
solving approaches affect generation quality and efficiency.

Continual Learning for Code Systems. The success of
our maintenance agent highlights the importance of contin-
ual adaptation in software-related AI systems. As codebases
evolve rapidly, static models quickly become obsolete without
mechanisms for incremental learning.

Multi-Modal Code Understanding. Repository-level code
generation requires understanding text, code structure, execu-
tion traces, and architectural patterns. This multi-modal chal-
lenge suggests directions for more comprehensive code under-
standing systems.

12.6 Practical Deployment Considerations
For practitioners considering deployment of SEMANTIC-
FORGE or similar systems, our experience highlights several
important factors:

Test Suite Quality. The effectiveness of dynamic analysis
correlates strongly with test coverage and quality. Organiza-
tions should invest in comprehensive testing infrastructure to
maximize benefits from advanced code generation tools.

Incremental Adoption. SEMANTICFORGE’s modular ar-
chitecture enables incremental deployment, allowing organi-
zations to adopt components gradually. Starting with knowl-
edge graph construction and query planning provides immedi-
ate benefits with lower risk.

Developer Training. Successful deployment requires train-
ing developers to effectively collaborate with AI-assisted gen-
eration tools. Understanding system capabilities and limita-
tions is crucial for productive use.

Infrastructure Planning. The computational requirements
for SEMANTICFORGE necessitate careful infrastructure plan-
ning. Organizations should evaluate resource needs against
expected productivity gains.

12.7 Long-Term Vision
SEMANTICFORGE represents progress toward a long-term vi-
sion of AI-assisted software development where automated
tools understand and respect the principles of software engi-
neering. In this future, developers work collaboratively with
AI systems that understand architectural patterns, maintain
consistency across large codebases, and generate code that is
not only functional but maintainable and well-integrated.

This vision requires continued research across multiple di-
mensions: better algorithmic reasoning, more sophisticated

32

Journal of Emerging Applied Artificial Intelligence (JEAAI)

constraint systems, improved human-AI collaboration inter-
faces, and deeper understanding of software engineering prin-
ciples. SEMANTICFORGE provides a foundation for this re-
search by demonstrating that explicit semantic representation
and constraint-aware generation can address fundamental lim-
itations of current approaches.

The ultimate goal is not to replace human developers but
to amplify their capabilities, enabling them to focus on cre-
ative design, architectural innovation, and complex problem-
solving while automated systems handle routine implementa-
tion tasks with reliability and consistency. SEMANTICFORGE
takes an important step toward this collaborative future.

12.8 Closing Remarks
Repository-level code generation represents one of the most
challenging problems in automated software development, re-
quiring systems that understand not just local code patterns
but global architectural principles and semantic constraints.
SEMANTICFORGE demonstrates that this challenge can be
addressed through careful integration of symbolic reasoning
and neural generation, explicit knowledge representation, and
constraint-aware synthesis.

Our results show significant advances in both functional cor-
rectness and hallucination reduction, while our open-source
release of REPOKG-50 provides a foundation for continued
research in this critical area. The techniques and insights
from SEMANTICFORGE have broader applicability to other
domains requiring constraint-aware generation and semantic
consistency.

As AI-assisted development tools become increasingly so-
phisticated, the principles demonstrated in SEMANTICFORGE
–explicit knowledge representation, learned context selection,
constraint-aware generation, and continual adaptation—will
become essential components of reliable and effective auto-
mated development systems. We look forward to continued
research building on these foundations to realize the full po-
tential of AI-assisted software engineering.

References
[1] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,

Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Kumar,
Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert
Giaquinto, Haifeng Qian, Murali Krishna Ramanathan,
Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia,
Sudipta Sengupta, Dan Roth, and Bing Xiang. Multi-
lingual evaluation of code generation models. In Pro-
ceedings of the 40th International Conference on Ma-
chine Learning (ICML), 2023. arXiv:2210.14868.

[2] Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q. Feldman, Arjun Guha, Michael Greenberg,

and Abhinav Jangda. Multipl-e: A scalable and poly-
glot approach to benchmarking neural code genera-
tion. IEEE Transactions on Software Engineering,
49(7):3675–3691, 2023. arXiv:2208.08227.

[3] Mark Chen, Jerry Tworek, Christopher Jun, Qiming
Zhai, et al. Evaluating large language models trained on
code. In Proceedings of the 38th International Confer-
ence on Machine Learning, 2021. arXiv:2107.03374.

[4] Yicheng Chen, Shiqi Wang, Song Feng, et al. Teaching
large language models to self-improve at code generation
via retrieval augmented refinement. In arXiv preprint
arXiv:2310.01234, 2023.

[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 4963 of
Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[6] Yangruibo Ding, Zijian Wang, Wasi Ahmad, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia,
Dan Roth, and Bing Xiang. Cocomic: Code comple-
tion by jointly modeling in-file and cross-file context. In
Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 3456–3468,
2024. arXiv:2212.10007.

[7] GitHub. Github copilot: Your ai pair pro-
grammer. https://github.com/features/
copilot, 2021. Accessed: 2025-07-14.

[8] Google Inc. Bazel: A fast, scalable, multi-language build
system.
urlhttps://bazel.build/, 2015. Open-sourced March 2015.
Accessed: 2025-07-22.

[9] Daya Guo, Shuo Ren, Suyuan Lu, Song Feng, Duyu
Tang, Shuai Zhang, Zhi Liu, Daya Tang, and Zhi Jin.
Graphcodebert: Pre-training code representations with
data flow. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence, 2021.

[10] Daya Guo, Shuning Zhao, Duyu Tang, et al. Unixcoder:
Unified cross-modal pre-training for code understand-
ing and generation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics, 2022.

[11] Ashish Gupta and Inderpal Singh Mumick. Maintenance
of materialized views: Problems, techniques, and appli-
cations. IEEE Data Engineering Bulletin, 18(2):3–18,
June 1995. Special Issue on Materialized Views and Data
Warehousing.

[12] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. Codesearchnet
challenge: Evaluating the state of semantic code search.

33

https://github.com/features/copilot
https://github.com/features/copilot

Journal of Emerging Applied Artificial Intelligence (JEAAI)

In arXiv preprint arXiv:1909.09436, 2019. Multi-
language dataset covering Python, Java, JavaScript, PHP,
Ruby, and Go.

[13] Quoc Le, Mark Chen, et al. Coderl: Program syn-
thesis with reinforcement learning. In arXiv preprint
arXiv:2211.00067, 2022.

[14] Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. Coderetriever: A large
scale contrastive pre-training method for code search. In
Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
2898–2910, 2022.

[15] Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles, James
Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hu-
bert, Peter Choy, Cyprien de Masson d’Autume, Igor
Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes
Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097, 2022.

[16] Jiawei Liu, Lin Chen, and Hongyu Zhang. Codekg:
Building knowledge graphs from code documentation
and api references. In Proceedings of the 29th IEEE
International Conference on Program Comprehension
(ICPC), pages 321–331, 2021.

[17] Ming Luo. Machine learning for time series analysis
and forecasting. Master’s thesis, Northeastern Univer-
sity, Boston, Massachusetts, May 2023.

[18] Meta AI. Code llama: Open foundation mod-
els for code. https://ai.meta.com/blog/
code-llama-large-language-model/, 2023.
Accessed: 2025-07-14.

[19] Microsoft Corporation. Pylance: Fast, feature-rich
language support for python in visual studio code.
urlhttps://devblogs.microsoft.com/python/announcing-
pylance-fast-feature-rich-language-support-for-python-
in-visual-studio-code/, 2020. Accessed: 2025-07-22.

[20] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. Lever:
Learning to verify language-to-code generation with ex-
ecution. In Proceedings of the 40th International Confer-
ence on Machine Learning (ICML), pages 26106–26128,
2023.

[21] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and Caim-
ing Xiong. Codegen: An open large language model for
code with multi-turn program synthesis. In Proceedings
of the 11th International Conference on Learning Repre-
sentations (ICLR), 2023. arXiv:2203.13474.

[22] Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. Asleep at the
keyboard? assessing the security of github copilot’s code
contributions. In Proceedings of the 2022 IEEE Sym-
posium on Security and Privacy, pages 754–768, 2022.
arXiv:2108.09293.

[23] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit Gul-
wani. Synchromesh: Reliable code generation from pre-
trained language models. In Proceedings of the 10th
International Conference on Learning Representations
(ICLR), 2022. arXiv:2201.11227.

[24] Ramya Ramakrishnan, Aws Albarghouthi, Somesh
Jha, and Thomas Reps. Codeplan: Repository-
level coding using llms and planning. arXiv preprint
arXiv:2309.12499, 2023.

[25] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Tal Remez, Jérémy Rapin, et al. Code llama:
Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023. Accessed: 2025-07-22.

[26] Divyansh Shrivastava, Hugo Larochelle, and Daniel Tar-
low. Rag-code: Retrieval augmented generation for code
synthesis. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pages
2234–2245, 2023.

[27] Chunqiu Song, Mingyang Zhou, et al. An empirical
study of code generation errors made by large language
models. In Workshop on Machine Learning for Program-
ming (ML4P), 2023.

[28] Shashank Srikant, Benjamin O’Brien, Sebastian Tschi-
atschek, Eugene Bagdasaryan, Rishabh Rozen, Vikash
Krishnamurthy, et al. Generating secure code with lan-
guage models. In arXiv preprint arXiv:2306.23034,
2023.

[29] Mingxi Tang et al. Codeagent: Autonomous program-
ming with conversational software agents. In arXiv
preprint arXiv:2312.13010, 2023.

[30] Hao Wang, Chen Li, Qian Zhang, and Yang Liu. Pro-
gramkg: Constructing knowledge graphs from program
execution traces for debugging applications. In Proceed-
ings of the 45th International Conference on Software
Engineering (ICSE), pages 1832–1843, 2023.

[31] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. Codet5+: Open code large lan-
guage models for code understanding and generation. In
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1069–1088, 2023.

[32] Ronald J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3-4):229–256, 1992.

34

https://ai.meta.com/blog/code-llama-large-language-model/
https://ai.meta.com/blog/code-llama-large-language-model/

Journal of Emerging Applied Artificial Intelligence (JEAAI)

[33] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. A systematic evaluation of large language
models of code. In Proceedings of the 6th ACM SIG-
PLAN International Symposium on Machine Program-
ming (MAPS), pages 1–10, 2022. arXiv:2202.13169.

[34] John Yang, Carlos E. Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik R. Narasimhan, and Ofir
Press. Swe-agent: Agent-computer interfaces enable au-
tomated software engineering. In Proceedings of the 38th
Conference on Neural Information Processing Systems
(NeurIPS), 2024. arXiv:2405.15793.

[35] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung,
Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. Repocoder: Repository-level code com-
pletion through iterative retrieval and generation. In Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 2471–
2484, 2023.

35

	Introduction
	Related Work
	Neural Code Generation
	Repository-Level Code Understanding
	Constraint-Aware Code Generation
	Knowledge Graphs for Code Understanding
	Positioning of SemanticForge

	Problem Definition and Formalization
	Repository-Level Code Generation
	Hallucination Taxonomy
	Complexity Analysis
	Problem Hardness and Approximation
	Solution Requirements

	Methodology
	Framework Overview
	Key Innovations Beyond Integration
	Design Rationale
	Mathematical Foundations

	Repository Knowledge Graph Construction
	Problem Formulation
	Unified Graph Schema
	Dual Analysis Algorithm and Performance

	Neural Query Planner
	Problem Formulation
	Query Generation Algorithm
	REINFORCE Training with Graph-Aware Rewards
	Learned Query Expansion
	Empirical Results
	Theoretical Guarantees

	Schematic-Constraint Decoder
	Problem Formulation
	Constraint Types and SMT Encoding
	Novel SMT-Integrated Beam Search Algorithm
	Optimization Strategies
	Empirical Validation
	Theoretical Guarantees
	Summary

	Continual Knowledge Graph Maintenance
	Problem Formulation
	Impact Analysis Algorithm
	Novel Incremental Update Algorithm
	Empirical Validation
	Experimental Setup and Methodology
	Quantitative Performance Results
	Real-World Repository Case Studies
	Optimization Impact Analysis
	Scalability Validation

	Theoretical Guarantees
	Discussion and Implications

	Experimental Setup
	Dataset Construction
	Evaluation Metrics
	Baseline Systems
	Implementation Details
	Human Evaluation Protocol
	Cross-Repository Generalization Analysis
	Theoretical Validation Experiments
	Statistical Analysis

	Results and Analysis
	Overall Performance Results
	Component Ablation Analysis
	Hallucination Analysis
	Scalability Analysis
	Cross-Repository Generalization Results
	Domain-Specific Performance
	Human Evaluation Results
	Detailed Computational Overhead Analysis
	Error Analysis and Failure Cases

	Discussion and Limitations
	Key Contributions and Impact
	Generalizability Analysis
	Fundamental Limitations
	Computational and Practical Limitations
	Ethical and Safety Considerations
	Comparison with Contemporary Approaches
	Future Research Directions
	Implications for Software Engineering

	Conclusion
	Summary of Contributions
	Broader Impact
	Technical Significance
	Limitations and Future Directions
	Research Implications
	Practical Deployment Considerations
	Long-Term Vision
	Closing Remarks

