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Abstract

This paper explores strategic decision-making chal-
lenges arising from a desert-crossing simulation game,
which serves as a representative model for resource-
constrained routing under uncertainty and competition.
Multiple scenarios are examined, including single-player
settings with known or unknown weather conditions, and
multi-player environments with either pre-defined or real-
time strategic interactions. Dynamic programming (DP),
Dijkstra’s algorithm, knapsack problem formulations, and
game-theoretic models form the foundation of the analy-
sis. Computational techniques, such as LINGO optimiza-
tion and Monte Carlo simulation, are applied to obtain
and compare solutions. Under fully deterministic weather,
a cyclic mining and supply-return route emerges as the
optimal strategy. In stochastic environments, simpli-
fied heuristics based on expected monetary outcomes are
shown to be effective. For multi-agent scenarios, integrat-
ing optimal and suboptimal routes reduces resource com-
petition. Dynamic games further benefit from day-by-day
route adjustments aimed at minimizing resource consump-
tion while maintaining equitable returns. The study con-
cludes with an evaluation of model performance, identifies
current limitations such as validation needs and scenario
specificity, and outlines directions for future research, in-
cluding application to logistics planning and multi-agent
system coordination and extensions to more complex net-
work structures and real-world logistics or supply chain
problems where resource allocation and pathfinding under
uncertainty are crucial.[1]

Keywords—Dynamic programming, Dijkstra’s shortest path
algorithm, Knapsack problem, Game theory, Nash equilib-
rium, Stochastic simulation

1 Introduction

1.1 Literature Review
In multistage decision problems, the principle of optimal-
ity underpins dynamic programming (DP), first formalized
by Bellman[3]. For deterministic routing on nonnegative-
weighted graphs, Dijkstra’s algorithm efficiently computes
shortest paths in O

(
|E| + |V | log |V |

)
time, and may itself

be viewed as a DP instance[6].

Modern routing problems frequently extend these ideas to
orienteering variants, where one maximizes collected rewards
under time or capacity constraints. For example, Tang et al.
embed DP subroutines within reinforcement-learning frame-
works to improve orienteering solutions[7]. When uncertainty
enters—e.g. stochastic travel times—Monte Carlo Tree Search
has been used to solve chance-constrained orienteering prob-
lems[5], and rolling-horizon DP with sample-average approx-
imation tackles time-dependent stochastic travel[10].

Meanwhile, noncooperative routing games model compe-
tition over shared network resources.[9] Altman and Wynter
analyze how self-interested agents reach equilibrium in con-
gested flows via fixed-point iterations akin to DP updates[2].
In discrete route-selection settings, Xu et al. integrate DP-
based knapsack solvers into a Nash-equilibrium search, cap-
turing strategic detours under resource contention[8]. While
individual techniques are well-established, their integrated ap-
plication here provides a structured framework for analyzing
multi-stage, resource-constrained decisions under varying in-
formation structures and competition, offering a testbed for
strategies potentially applicable to domains like vehicle rout-
ing with refueling or distributed resource gathering.

The “Crossing the Desert” game synthesizes these themes:
each stage’s cost depends on stochastic weather, inventory
constraints resemble knapsack structures, and multiple players
compete over limited resources. To our knowledge, no prior
work has jointly applied DP, Dijkstra subroutines, and nonco-
operative game theory in this setting. This paper fills that gap
by:

1. Developing single-agent DP models under known and
unknown weather scenarios;

2. Embedding these into discrete-time game models for
multi-agent competition;

3. Validating strategies via LINGO optimization and C++
Monte Carlo simulation.

1.2 Game Overview
With a map, players use their initial funds to buy a certain
amount of water and food (including food and other daily ne-
cessities), start from the starting point, and walk in the desert.
The goal is to reach the end point within the specified time and
keep as much money as possible. You will encounter different
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weather conditions along the way, and you can also replenish
funds or resources in mines and villages.

1.3 Basic rules of the game

1. Single player game rules
(1) The basic time unit is day. When the game starts, the

player is at the starting point, which is recorded as day 0. The
player must reach the end point on or before the deadline. Af-
ter reaching the end point , the game ends for that player.

(2) The weather in all areas of the desert is the same every
day, which is one of the three conditions: ”clear”, ”hot” or
”sandstorm”.

(3) Every day, players can move from one area of the map
to another adjacent area, or they can stay where they are. On
a sandstorm day, players must stay where they are. (In a map,
two areas with a common border are considered adjacent, and
two areas with only a common vertex are not considered adja-
cent.)

(4) Crossing the desert requires two resources: water and
food. The minimum unit of measurement is a box. The total
weight of water and food a player has each day cannot exceed
the upper limit. If the water or food runs out before reaching
the end, the game is considered a failure.

(5) The amount of resources consumed by a player staying
in one place for one day is the basic consumption, and the
amount of resources consumed by a player walking for one
day is twice the basic consumption .

(6) When players stay at the mine, they can earn money
through mining. The amount of money earned from mining
for one day is called basic income. If mining, the amount of
resources consumed is three times the basic consumption; if
not mining, the amount of resources consumed is the basic
consumption. (Mining is not allowed on the day of arrival at
the mine, but mining is also possible on sandstorm days.)

(7) On day 0, the player can use the initial funds to pur-
chase water and food at the base price at the starting point.
The player can stay at the starting point or return to the start-
ing point, but cannot purchase resources at the starting point
multiple times. When the player passes through or stays in
the village, he can use the remaining initial funds or the funds
obtained from mining to purchase water and food at any time.
The price per box is twice the base price. After reaching the
end point, the player can return the remaining resources at half
the base price.
2. Multiplayer Game Rules

(1) If any of the players walk from area A to area B on a
certain day, the amount of resources consumed by any of them
is k times the basic consumption.

(2) If any of the players mine in the same mine on a certain
day, the amount of resources consumed by any of them is 3
times the basic consumption, and the funds that each player
can obtain through mining in a day are the basic income .

(3) If any of the players purchase resources in the same vil-
lage on a certain day, the price of each box will be 4 times the
base price.

(4) In other cases, the amount of resources consumed and
the price of resources are the same as those in a single-player
game.

1.4 Problem
Question 1: There is only one player, and the weather condi-
tions are known in advance every day during the entire game
period. Give the optimal strategy for the player under normal
circumstances. Solve the ”First Level” and ”Second Level”
in the attachment. The remaining funds (remaining water, re-
maining food) refers to the funds (water, food) after all the
resources required for the day have been consumed. If there is
any purchase behavior on the same day, it refers to the funds
(water, food) after the purchase is completed.

Question 2: There is only one player, and the player only
knows the weather conditions of the day. He can decide the
action plan for the day based on this. Give the best strategy for
the player under normal circumstances, and discuss the ”third
level” and ”fourth level” in the attachment in detail.

Question 3: There are n players who have the same initial
capital and start from the starting point at the same time.

(1) Assume that the weather conditions for each day of the
game are known in advance. Each player’s action plan must be
determined on day 0 and cannot be changed thereafter . Give
the strategies that players should take in general, and discuss
the ”fifth level” in detail.

(2) Assume that all players only know the weather condi-
tions for the day. Starting from the first day , each player
knows the action plans of other players and the amount of re-
sources left after completing the action for the day, and then
determines their own action plan for the next day. Give the
strategies that players should adopt in general, and discuss the
”Sixth Level” in detail.

2 Model Development and Solution
Approaches

2.1 Explanation of symbols

2.2 Analysis of Question 1
According to the rules of the game, the game is roughly cal-
culated and analyzed, and the optimal strategy is determined
according to different situations. Thus, multiple plans are de-
termined, such as going directly from the starting point to the
end point, from the starting point to the mine or village, and
then back to the end point. Then one or more plans are selected
according to the specific situation of different levels, and the
remaining funds of the player after reaching the end point un-
der different plans are calculated, and the optimal plan is ob-
tained by comparison.

2.3 Analysis of Question 2
Since players can only know the weather conditions of the day,
in general, they can simply estimate the local weather condi-
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Table 1: List of Symbols and Definitions

Symbol Meaning

Rw Total expenditure amount
Rw1

Expenditure on goods purchased in the initial village
Rw2r Expenditure on goods purchased in the village during the r-th loop
Rw2

Total expenditure on goods purchased during transit
W0 Initial capital
di Unit price of item i
ki Quantity of item i purchased
P Base income
tj Number of days required in stage j
tjq Number of sunny days in stage j
tjg Number of hot days in stage j
tjs Number of sandstorm days in stage j
Xij Amount of item i consumed in stage j
biq Consumption of item i on a sunny day
big Consumption of item i on a hot day
bis Consumption of item i on a sandstorm day
ci Weight of item i
Pij Plan option j under situation i
Mi Maximum number of boxes for item i
f [i][v] DP state variable in the knapsack problem
R′

w Revenue from residual goods at the destination
Rmn Position of person m after the n selection
Wmn Remaining capital of person m after the n selection

tions based on the number of days, choose the specific direc-
tion of movement for the day, and buy more resources based
on the shortest path from the starting point to the end point to
provide more options for the player’s movement. For the third
level, two solutions can be obtained through analysis. Under
the condition of randomly generating enough weather patterns,
the expected value of the funds left over from the two solutions
after n games with different weather conditions is calculated
to determine the optimal solution. For the fourth level, based
on the basic model of problem one, four solutions for problem
four are obtained, and then the four solutions are simplified us-
ing the characteristics of the graph and known conditions. Us-
ing similar ideas to the third level, the expected value of each
solution under enough weather conditions is used to measure
the advantages and disadvantages of the solution.

2.4 Analysis of Question 3
In the first question, since there are multiple players partici-
pating in the game at the same time, the optimal route when
there is only one player is no longer the optimal route. There-
fore, the general strategy of the player is to randomly choose
one of the optimal and suboptimal routes as the action plan for
this game on day 0. When solving the ”fifth level”, first con-
sider the shortest route, three days, four days, and five days.
Considering that the two players are in a competitive rela-
tionship, both players consider routes with less consumption
or more benefits, so only consider both choosing a three-day
route, both choosing a four-day route, or one of them choosing

a three-day route and one choosing a four-day route, or both
choosing a five-day mining route. Introducing random num-
bers and using C++ for simulation, we obtained the amount of
funds left when the player reaches the end in all the cases we
listed.

In the second question, because after the end of each day’s
game, players will determine tomorrow’s action plan based on
their own funds and resources, and know other players’ funds
and resources to infer other players’ action plans. In this case,
players need to choose the movement plan that consumes the
least funds and resources for the next day. When conducting a
specific analysis and discussion of the ”Sixth Level”, 0-1 vari-
ables are introduced to control the weather. Let the unknown
location of the mth person after the nth iteration be , combined
with the map of the ”Sixth Level”, dynamic data prediction for
players is carried out, and the restrictions on players’ mining,
path selection, and whether to enter the village are discussed.

3 Scenario 1: Single Player with Deter-
ministic Weather

3.1 Determination of the Optimal Strategy
The overall decision direction of the player is: staying in areas
other than the mine will consume player resources and bring
no benefits, so it is not considered that the player will stay in
other areas in sunny or hot weather, and the player will not
return to the starting point after departure.
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If you decide to go mining, the player’s general decision di-
rection is: while ensuring that water and food are consumed
roughly at the same time, try to buy more food at the starting
point, buy more water and less food in the village; after reach-
ing the end, try to avoid having surplus resources.
Case 1: At the starting point, decide whether to travel to the
mine to extract resources based on the mine’s basic daily in-
come.

Decision 1: If the basic daily income of the mine is far less
than the funds required by the player to go to the mine, the op-
timal strategy is to purchase only the resources that the player
needs from the starting point to the end point at the starting
point, without going to the mine, and go directly to the end
point.

The decision to undertake a mining detour is formulated as
a cost-benefit analysis. Let ∆Cmine represent the additional
cost (in monetary units) of traveling to the mine, mining for m
days, and then proceeding to the final destination, as compared
to taking the most direct path to the destination. This cost is
derived from the weather-dependent consumption of resources
(water and food) along the longer path and during mining ac-
tivities.

The strategy of choosing to mine is optimal if the total rev-
enue generated exceeds this additional cost. This is formalized
by the following inequality:

p ·m > ∆Cmine (1)

where:

• p is the base daily income from mining (a constant given
in the game rules).

• m is the number of days the player chooses to spend min-
ing (m ≥ 1).

• ∆Cmine is the net additional cost of the mining detour.

Decision 2: The player should opt for the mining strategy if
and only if there exists an integer m ≥ 1 such that inequality
(1) holds and the player’s initial resources and the time con-
straint allow for this detour.
Case 2: At the starting point, calculate the funds needed
for the player to go to the village and to the mine based on
the weather. Based on the comparison of the funds, decide
whether to go to the mine or the village first.

Decision 3: If the funds required to reach the mine are small,
then go to the mine first. If the remaining resources after reach-
ing the mine are sufficient to support the player to reach the vil-
lage to replenish resources after digging for at least one day,
then the best decision is to reach the mine first.

Decision 4: If the funds required to reach the village are
less, then go to the village first.
Case 3: The player makes the best decision based on the actual
situation in the mine or village. And the player can go back
and forth between the mine and the village.

Situation 3-1: In the mine, on the premise of ensuring that
the player can reach the end point from the mine, the player de-
cides whether to go to the village to replenish resources based

on the remaining resources, funds and weather conditions of
the remaining days.

Decision 5: If the remaining resources, funds, and days are
sufficient to support the player to go to the village to replenish
resources and the income from returning to the mine to mine
is greater than the player’s capital consumption to replenish
resources, then the optimal decision is to go to the village to
replenish resources and return to the mine to mine.

Decision 6: If the player goes to the village to replenish re-
sources at the end of the remaining days, and the income from
returning to the mine to mine is less than the cost of replenish-
ing resources, then the optimal strategy is for the player not to
replenish resources and return directly to the end point.

Situation 3-2: In the village, decide whether to go back to
the mine to mine based on the remaining resources, funds and
number of days.

Decision 7: If the player’s mining income is greater than
the capital expenditure, the optimal strategy is for the player
to travel to the mine to extract resources after replenishing re-
sources in the village.

Decision 8: If the player’s mining income is less than the
capital expenditure, the optimal strategy is for the player not
to mine and return to the end point.

3.2 Establishment of general model

3.2.1 Model preparation - establishment of description
matrix

Based on the map that the player gets when starting the game,
use a 0-1 matrix to describe whether area A and area B are
adjacent.

αij

{
1 if vi and vj share a common boundary
0 if vi and vj do not share a common boundary

The matrix A0 can be obtained as follows:

A0 =

a11 · · · a1n
...

. . .
...

an1 · · · ann


3.2.2 Model from the starting point to the end point di-

rectly

If the player does not consider going to the mine to mine ,
then he can directly consider the shortest path from the starting
point to the end point . The shortest path is certain, and the
money to be spent on buying water and food is also certain ,
so after determining the shortest path , the player’s money at
the end point can also be determined accordingly. ( In the case
where the shortest path passes through a mine or a village, we
will divide it into the following scheme for discussion).

Using Dijkstra’s shortest path graph theory algorithm, we
can get the following model:

Model 1 (All-Pairs Shortest Path): Let A(k)(i, j) repre-
sent the length of the shortest path from node i to node j where
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only nodes 1, 2, . . . , k are allowed as intermediate nodes.

A(k)(i, j) = min
(
A(k−1)(i, j), A(k−1)(i, k) +A(k−1)(k, j)

)
(2)

for k = 1 to n, where n is the total number of nodes (areas) on
the map.

The initial state is:

A(0)(i, j) =


0 if i = j

w(i, j) if i ̸= j and an edge exists with weight w(i, j)
∞ otherwise (no direct connection)

3.2.3 Model from the starting point to the end point via a
mine or village

1. Preliminary classification of models
Based on the above optimal strategy, we first preliminarily

determined three options, namely, going to the mine first and
then to the village, going to the village first and then to the
mine, and going back and forth between the mine and the vil-
lage.

A simple analysis shows that the goal of the game is to reach
the end within the specified time and keep as much money as
possible. Considering that the basic income of the mine is rel-
atively rich, walking or staying in areas other than the mine
will only consume resources, so we consider excluding the
necessary time to move between the starting point, the mine
and the village, and the end point, so that the player can only
stay in the mine as much as possible. We establish mathemati-
cal models corresponding to these three solutions respectively.
When solving the levels, we add, reduce or exchange the inter-
mediate links according to the specific situation, and introduce
known information to simplify the model of each level.
The first level is shown in the Fig.1.

2. Model establishment for the scenario where the player
goes to the village first and then to the mine

Model 2: The player’s walking diagram is as follows: The
objective function is to maximize the remaining funds at the
endpoint:

max w = w0 + p(t0 − 1) +R′
w −Rw (3)

where w0 is the initial funds, P is the player’s basic income
at the mine, R′

w is the funds obtained by returning resources
at the endpoint, and Rw is the total funds spent on purchasing
resources.

Rw = Rw1
+Rw2

(4)

Here, Rw1
=

∑2
i=1 diki represents the funds spent on pur-

chasing k1 boxes of water and k2 boxes of food at the starting
point, and Rw2

= 2
∑2

i=1 diki+2 represents the funds spent
on purchasing k3 boxes of water and k4 boxes of food in the
village. di denotes the unit price. The total funds spent must
not exceed the initial funds.

Using the knapsack problem in dynamic programming, de-
termine the ratio of water and food the player should purchase

Figure 1: ”Level 1” map

at the starting point:

f [i][v] = max
{
f [i− 1][v − kiCi] + kiwi

∣∣∣ 0 ≤ ki ≤ Mi

}
(5)

where i ∈ {1, 2}, m ∈ {1, 2, 3, 4}

The player’s game duration is 30 days:

tj = tjq + tjg + tjs, j ∈ {1, 2, 3, 4}, tj ≤ 30 (6)

The resource consumption boxes without mining are:

Xij = 2(biqtjq + bigtjg) + bistjs, j ∈ {1, 2, 3} (7)

The resource consumption boxes for mining control are:

Xij = 3(bqjtjj + bgjtfg + bhjths), j = 4 (8)

At the endpoint, the player can return remaining resources
at half price, with the resulting income:

R′
w =

1

2

2∑
i=1

di

ki + ki+2 −
4∑

j=1

XijCj

 (9)

The total weight of resources owned by the player must not
exceed the load capacity limit:

2∑
i=1

Ci(ki + ki+2)−
4∑

j=1

XijCj ≤ M (10)
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For clarity, the core step in many shortest path algorithms
involves comparing paths through intermediate nodes. A stan-
dard formulation for computing the shortest path between all
pairs of nodes (like the Floyd-Warshall algorithm) is: This
formulation iteratively improves the shortest path estimate be-
tween nodes i and j by considering paths through an interme-
diate node k. Additionally, although this scenario does not
follow the shortest path, imposing a shortest path constraint
restricts unnecessary player movements and reduces resource
waste:

Let A(k)(i, j) represent the length of the shortest path from
node i to node j where only nodes 1, 2, . . . , k are allowed as
intermediate nodes.

A(k)(i, j) = min
(
A(k−1)(i, j), A(k−1)(i, k) +A(k−1)(k, j)

)
(11)

for k = 1 to n, where n is the total number of nodes (areas) on
the map.

The initial state is:

A(0)(i, j) =


0 if i = j

w(i, j) if i ̸= j and an edge exists with weight w(i, j)
∞ otherwise (no direct connection)

3. Modeling of the scenario where the player goes to the
mine first and then to the village

The player’s walking diagram is as follows:
Model 3: Similarly, the following model can be established:

maxw = w0 + p(t4 − 1) +R′
w −Rw

Rw =

2∑
i=1

diki + 2

2∑
i=1

diki+2 ≤ w0

f [i][v] = max {f [i− 1][v − kiCi] + kiwi,≥ 0}

i ∈ {1, 2}, m ∈ {1, 2, 3, 4}

0 ≤ ki ≤ M, ki −
m∑
j=1

Xij

Rw1 ≤ w0

Rw2 ≤ w0 −Rw1 + p(t4 − 1)

tj = tjq + tjg + tjs, j ∈ {1, 2, 3, 4}

Xij = 2
(
bqfjq + bgfjg

)
+ bgfjg , j ∈ {1, 2, 3}

Xij = 3
(
bqfjq + bgfjg

)
+ bgfjg , j = 4

R′
w =

1

2

2∑
i=1

di

ki + ki+2 −
4∑

j=1

Xij


2∑

i=1

Ci(ki + ki+2)−
2∑

i=1

4∑
j=1

XijCi ≤ M

A(k)(i, j) = min
(
A(k−1)(i, j), A(k−1)(i, k) +A(k−1)(k, j)

)
The differences from Model 3 compared to Model 2 are:

1. Constraint 1:
Rv1 ≤ w0

This means the funds spent by the player at the starting point
cannot exceed the initial funds.

2. Constraint 2:

Rv2 ≤ w0 −Rw1 + p(t4 − 1)

This indicates that the funds spent by the player in the vil-
lage must not exceed the sum of the remaining funds after
starting point purchases and the income earned from mining.

3. Dynamic Programming Adjustment:

f [j][v] = max {f [i− 1][v − kiCt] + kiwt, 0 ≤ ki ≤ Mt, }

This formula specifies that the resources purchased at the
village must support the player’s journey from the starting
point to the mine, mining activities, and resource replenish-
ment from the mine to the village.
4. The establishment of a model for players to travel back
and forth between the mine and the village

The player’s walking diagram is as follows, in which players
can travel back and forth between the mine and the village
based on their existing funds, resources, remaining days and
weather, without losing funds.

On the basis of Model 2 and Model 3, we introduce the
parameter r to represent the number of times the player goes
back and forth between the mine and the village, and establish
the mathematical model of this scheme:

Model 4:

maxw = w0 + p

2∑
i=1

(t4r − 1) +Rw −Rw

Rw = Rw1
+Rw2

Rv1 ≤ w0

RW3 = 2

2∑
i=1

dik(i+2)r

Rv2r ≤ w0 −Rv1 + p(t4r − 1)− 2

2∑
i=1

dik(i+2)(r−1)

f [i][v] = max {f [i− 1][v − kiCi] + kiwi, 0 ≤ ki ≤ Mi}

i ∈ {1, 2}, m ∈ {1, 2, 3, 4}

tj = tjq + tjg + tjs, j ∈ {1, 2, 3, 4}

t = t1 + t2 + r(t3 + t4) ≤ 30

Xij = 2(biqtjq + bigtjg) + bistjs, j ∈ {1, 2, 3}

Xij = 3(biqtjq + bigtjg + bistjs), j = 4

k3n −
3∑

i=2

X3i ≥ 0, k4n −
3∑

i=2

X4i ≥ 0 (r = n)

R′
w =

1

2

2∑
i=1

n∑
r=1

di

kir + k(i+2)r −
4∑

j=1

Xij


6
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2∑
i=1

Ci(ki −Xi1) +

2∑
i=1

Xi1k(i+2)r − r

2∑
i=1

4∑
j=2
j ̸=3

XijCi ≤ M

A(k)(i, j) = min
(
A(k−1)(i, j), A(k−1)(i, k) +A(k−1)(k, j)

)
Where:

1. RT2 = 2
∑2

i=1 dik(i+2)r represents the money spent on
purchasing resources in the village r times;

2. Rv2r ≤ w0 − Rw1 + p(t4r − 1) −
2
∑2

i=1 dik(i+2)(r−1) (when r = 0, Rv2r = Rw1) where
means that the funds spent on purchasing resources in the
village each time cannot exceed the sum of the remaining
funds after purchasing resources at the starting point and the
income from the mine this time minus the funds spent on the
last purchase in the village.

3. t = t1 + t2 + r(t3 + t4) ≤ 30 which means the total
number of game days cannot exceed 30 days;

4. k3n −
∑3

i=2 X3i ≥ 0, k4n −
∑3

i=2 X4i ≥ 0 (r = n)
which means that the player had enough water and food when
he returned to the end point from the village or mine for the
last time.

3.3 Model building and solution of the “First
level”

3.3.1 Description Matrix for details)
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0


3.3.2 Model solution and result display

1. Solution steps
Use LINGO software to solve the model:
Step 1: Use Dijstra’s shortest path algorithm to find the five

shortest paths from the starting point to the village or mine,
from the end point to the village or mine, and from the starting
point to the end point.

Step 2: Substitute the shortest path into the four basic mod-
els to calculate the optimal solution among the four solutions.
When solving, the description matrix needs to be flipped and
solved twice.

Step 3: Sort out the optimal route according to the output of
Model 4 of the optimal solution
2. Results display

The following table can be obtained after sorting.
The player returned to the starting point on the 23rd day.

Draw the route on the map of ”Level 1” as shown below Fig.
2. As shown below Table. 2.

Figure 2: The best route map for the ”Level 1”

3.3.3 Model building and solution of the “Second level”

1. Description matrix:
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


2. Model solution steps and model display

The Second level is shown in the Fig. 3.
The solution steps are similar to those of the first level, ex-

cept that the description matrix and the total number of map
areas are replaced. We also use LINGO to solve the model
according to the route Table. 3.

Draw the route on the map of ”Level 2” as shown below Fig.
4.

The line in the picture is the walking path, and the area is
the area where the player needs to stay.

4 Scenario 2: Single Player with
Stochastic Weather

4.1 Model establishment and solution of prob-
lem 2: Optimal Strategy

Since the player can only know the weather conditions on the
current day, the weather on the day the player plays the game
and before that is known.

1. If there are few game days, players cannot make a simple
prediction of the weather in that place. Then players can only

7



Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 2: ”First Level” Results Table

Day Location Remaining Funds Remaining Water
0 1 5800 180
1 25 5800 164
2 24 5800 148
...

...
...

...
21 9 10430 26
22 21 10430 16
23 27 10430 0
24
25
26
27
28
29
30

Figure 3: ”Level 2” map

make decisions based on the conditions of the day. If it is
sunny, choose a moving direction that is close to the end point
and the village or mine. If it is hot weather, players choose to
move in the shortest direction from their current location to the
end point.

2. If there are many game days, move according to the strat-
egy in the first few days of the game. When the player has
played the game for a certain number of days and can make
a rough estimate of the weather in that place, he can decide
whether to go to the mine or village based on his own re-
sources and funds, or directly return to the end point by the
shortest path from his current location.

3. If the player has reached the village or mine, he can make
the best decision based on situation 3 in question 1.

4. Therefore, at the starting point, players need to buy an
appropriate amount of resources that are more than what is
needed for the shortest path based on the length of the map.

Table 3: ”Second Level” Results Table

Day Location Remaining Funds Remaining Water
0 1 6475 247
1 2 6475 231
2 3 6475 215
...

...
...

...
28 55 14775 32
29 63 12365 16
30 64 12365 0

Figure 4: The best route map for the ”Level 2”

4.2 Establishment and solution of the “third
level” model

1. Graphic analysis and solution determination
In question one, we gave four basic solutions: going directly

from the starting point to the end point, from the starting point
to the mine or village and then to the end point. By analyzing
the image characteristics of the third level below, we found
that there is no village on the Fig. 5.

Therefore, we simplify the four basic solutions into two so-
lutions suitable for this level according to the specific situation:

Solution 1: Take the shortest path from the starting point to
the end point;

Option 2: Take the shortest path from the starting point to
the mine for mining and then take the shortest path back to the
end point.
2. Establishment of the corresponding solution model

It is known that there will be no sandstorm weather within
10 days, so we define t1 as days of high-temperature weather
and t2 as days of clear weather:

t1 + t2 = 10 (12)

Since the graph is relatively simple, we directly obtain the
shortest path from the starting point to the endpoint (3 days)
and from the mine back to the endpoint (2 days). Assume the

8
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Figure 5: ”Level 3” map

first 3 days consist of t3 days of high-temperature weather and
t4 days of sunny weather:

t3 + t4 = 3 (13)

Model for Scheme 1:

w1 = w0 − 2

2∑
i=1

(dibigt3 + dibigt4) (14)

t3 + t4 = 3

Assume mining days include t5 days of high temperatures
and t6 days of clear skies, ensuring the player can return
smoothly from the mine to the endpoint:

t5 + t6 ≤ 5 (15)

Model for Scheme 2:

w2 = w0 − 2

2∑
i=1

[dibig(t1 − t5)− dibig(t2 − t6)] (16)

t1 + t2 = 10
t5 + t6 ≤ 5

3. Comparison of the two solutions determined
Since the player only knows the current day’s weather con-

dition, the specific weather pattern throughout the game can-
not be predetermined. Thus, direct comparison of w1 and w2

is infeasible. We randomly generate n weather patterns, in-
cluding all high-temperature days, all clear days, first 5 days
as high-temperature followed by 5 clear days, etc.:

ti ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (i ∈ {1, 2, 3, 4, 5, 6})

where ti and ti+1 satisfy Equations 12 and 13.
For each weather pattern, the player follows both Scheme 1

and Scheme 2 in the game. The expected remaining funds for
each scheme after n simulations are calculated as:

E[w1] =

∑n
i=1 w1i

n
, E[w2] =

∑n
i=1 w2i

n

When n is sufficiently large, the relative magnitudes of these
expectations reflect the superiority of the two schemes.
4. Model solution and results

Based on the model of the first question, a random factor
is introduced to describe the weather changes, and the descrip-
tion matrix and the total number of map areas are also changed.
The map description matrix of the ”third level” is:

0 1 0 1 1 0
1 0 1 1 0 0
0 1 0 1 0 0
1 1 1 0 1 1
1 0 0 1 0 1
0 0 0 1 1 0


Scheme 1: Mean remaining funds µ1 ≈ 9925, Standard Devi-
ation σ1 ≈ 25;
Scheme 2: Mean remaining funds µ2 ≈ 9139.25, Standard
Deviation σ2 ≈ 20;
Since µ1 > µ2, and considering the variances, Scheme 1 ap-
pears statistically better under the simulated conditions.
After 50 random operations, we get:

W 1 ≈ 9925, W 2 ≈ 9139.25, W 1 > W 2,

so plan 1 is better.

4.3 Establishment and analysis of the “fourth
level” model

1. Determination of the plan
Since the map of the fourth level has both villages and

mines, it conforms to the four basic solutions we determined
in question one. However, since we only know the weather on
that day in this question, in order to introduce the parameter
t, we adjust the four basic solutions and obtain four solutions
that are more in line with this question.

Plan 1: Take the shortest path from the starting point to the
end point;

Plan 2: Start from the starting point, go to the mine and then
go to the end point;

Plan 3: Start from the starting point to the mine and then go
to the end point;

Plan 4: From the starting point to the mine or village, travel
back and forth between the mine and the village according to
actual conditions, and finally go from the village or mine to
the end point.

2. Establishment of the corresponding solution model
Under the premise of the four basic schemes in Problem 1,

introduce the parameter t.
a. Assume there are t1 days of high-temperature weather,

t2 days of clear/cloudy weather, and t3 days of sandstorm
weather.

Model for Scheme 1:

w1 = w0 −
2∑

i=1

diki

9
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{∑2
m=1 tm = 8

ki − 2 (biqt1 + bigt2)− bist3 ≥ 0, i ∈ {1, 2}, 0 ≤ ki ≤ Mi

b. Assume mining includes t4 days of high-temperature
weather, t5 days of clear/cloudy weather, and t6 days of sand-
storm weather.

Model for Scheme 2:

w2 = w0 −
2∑

i=1

diki + p(t4 + t5 + t6 − 1)

{∑3
m=1 tm ≤ 30

ki = 2 [biq(t1 − t4)− big(t2 − t5)]− bis(t3 − t6) ≥ 0, i ∈ {1, 2}

c. Assume the player purchases water k3 and food k4 in the
village.

Model for Scheme 3:

w3 = w0−
2∑

i=1

diki−2

2∑
i=1

diki+2+
1

2

2∑
i=1

ki + ki+2 −
3∑

j=1

Xij




∑3
m=1 tm ≤ 30

k1 + k3 − 2 (b1qt1 + b1gt2)− b1st3 ≥ 0

k2 + k4 − 2 (b2qt2 + b2gt2)− b2st3 ≥ 0, 0 ≤ ki ≤ M

Xij = 2 (biqtjq + bigtgj) + bistjs, j ∈ {1, 2, 3}∑2
i=1 Ci [ki + ki+2 − 2 (biqt1 + bigt2)− bist3] ≤ M

d. Assume mining includes t4 days of clear weather, t5 days
of high-temperature weather, t6 days of sandstorm weather,
with 1 ≤ r ≤ n.

Model for Scheme 4:

w4 = w0 + p

n∑
r=1

(t4r + t5r + t6r − 1)−
n∑

i=1

diki



∑3
m=1 tm ≤ 30

k1 + k3r − 2
(
b1qt1(r−1) + b1gt2(r−1)

)
− b1sts(r−1) ≥ 0

k2 + k4r − 2
(
b2qt2(r−1) + b2gt2(r−1)

)
− b2sts(r−1) ≥ 0

Xij = 2 (biqtjq + bigtjs) + bistjs, j ∈ {1, 2, 3}
Xij = 3 (biqtjq + bigtjs + bistjs) , j ∈ {4}

3. Comparison of four solutions
So we randomly generate n weather patterns, including all

high-temperature days, all clear days, etc.:

ti ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (i ∈ {1, 2, 3, 4, 5, 6})

Since Level 4 rarely experiences sandstorms within 30 days,
we impose:

t1 = t2 = 10t3

For each weather pattern, the player follows all four
schemes in the game. The expected remaining funds for each
scheme after n simulations (E[w1],E[w2],E[w3],E[w4]) are
calculated. When n is sufficiently large, the relative magni-
tudes of these expectations reflect the superiority of the four
schemes.
4. Specific analysis of the combination of model and map

Figure 6: ”Level 4” Map

(1) Since the village and the mine are both on the shortest
path from the player’s starting point to the midpoint, and the
price of materials in the village is twice that of the starting
point, we do not consider option 3, that is, we do not consider
going directly back to the end point after shopping in the vil-
lage from the starting point. At the same time, the income
from the mine is relatively high, so we do not consider option
1, which is to take the shortest path directly to the end point.
Draw the route on the map of ”Level 4” as shown below Fig.
6

(2) Analysis shows that the shortest paths from the starting
point to the mine and the village are the same. Due to the un-
certainty of the weather, the player cannot decide the quantity
of resources to purchase if he goes to the village first, so the
player considers going to the mine first to mine.

(3) In the mine, the player is guaranteed to reach the
end point by calculating the remaining resources, funds and
weather conditions of the remaining days.

a. If the remaining resources, funds, and days are sufficient
to support the player to go to the village to replenish resources
and the income from returning to the mine to mine is greater
than the player’s capital consumption to replenish resources,
then the optimal decision is to go to the village to replenish
resources and return to the mine to mine.

b. If the player goes to the village to replenish resources at
the end of the remaining days, and the income from returning
to the mine to mine is less than the cost of replenishing re-
sources, the optimal strategy is for the player not to replenish
resources and return directly to the end point.
5. Model solution and results
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The description matrix of the “fourth level” is:
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0


From the above analysis, we know that plan 4 is better. We
use LINGO to calculate the model, and the results are consis-
tent with our analysis. The specific plan is: travel to the mine
to extract resources first, then go to the village to replenish
resources, then travel to the mine to extract resources, and fi-
nally return to the end. When the player returns to the end, the
remaining funds are 13625 yuan.

5 Scenario 3: Multi-player Competi-
tive Setting

5.1 If the weather is known in advance and the
plan is not changed after the starting point
is determined

5.1.1 Strategies that players should generally adopt

Since multiple players participate in the game simultaneously,
the following rules apply:

1. If k (2 ≤ k ≤ n) players move from area A to B on the
same day, the resource consumption becomes 2k times of the
base consumption.

2. If k (2 ≤ k ≤ n) players mine in the same mine on the
same day, each player’s resource consumption is 3 times of the
base consumption, and their daily mining income is reduced to
1
k times of the base income.

3. If k (2 ≤ k ≤ n) players purchase resources in the same
village on the same day, the price per box increases to 4 times
of the base price.

This will cause the optimal route when there is only one
player to no longer be the optimal route, so players should
consider the suboptimal route in the range of options when
choosing a plan on day 0.

Therefore, the general strategy of the player is to randomly
choose one of the optimal route and the suboptimal route as
the action plan for this game on day 0. This resembles a mixed
strategy in game theory, where players randomize over pure
strategies (routes) to maximize their expected payoff given
the potential actions of others, aiming for a Nash equilib-
rium where no player can benefit by unilaterally changing their
strategy.

Without considering other reasons for longer routes, the
probability of players choosing a longer route is small, and
choosing a longer route does not effectively reduce the prob-
ability of meeting other players, so the resources consumed
by players with a high probability of choosing a longer route
will increase.Draw the route on the map of ”Level 5” as shown
below Fig. 7.

Figure 7: ”Level 5” map

5.1.2 Establishment and solution of the “Fifth level”
model

1. Determination of route
Considering only the shortest routes, the 3-day routes are:

P1 =

(
1, 5, 6, 13
1, 4, 6, 13

)
The 4-day routes include:

P2 =


1, 4, 7, 12, 13
1, 4, 6, 12, 13
1, 4, 7, 11, 13
1, 5, 6, 12, 13


Since this question involves mines, we also consider 5-day

routes, categorized as:
With mining opportunities (P3):

P3 =


1, 2, 3, 9, 10, 13
1, 2, 3, 9, 11, 13
1, 4, 3, 9, 10, 13
1, 4, 3, 9, 11, 13


Without mining opportunities (P4):

P4 =

1, 4, 7, 11, 12, 13
1, 5, 6, 7, 12, 13
1, 5, 6, 12, 11, 13


Each row in P represents a distinct route.

2. Determination of the plan
Since the two players are in a competitive relationship, both

players consider routes with less consumption or more bene-
fits, so they only consider both choosing the three-day route,
both choosing the four-day route, or one of them choosing the
three-day route and the other choosing the four-day route, or
both choosing the five-day mining route.
(1) Both players choose the 3-day route:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(biq + big)− 4

2∑
i=1

dibiq
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(2) Both players choose the 4-day route:
a. Choosing P1 and P2:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(biq + big)− 4

2∑
i=1

diqbig

b. Choosing P1 and P3:

W = W1 +W2 = 2W0 − 2

2∑
i=1

diqbig − 4

2∑
i=1

di(biq + big)

c. Choosing P1 and P4:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(2biq + big)− 4

2∑
i=1

dibiq

d. Choosing P2 and P4:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(2biq + big)− 4

2∑
i=1

dibig

e. Choosing P3 and P4:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(2biq + big)− 4

2∑
i=1

dibig

f. Choosing P2 and P4:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(3biq + big)

(3) One chooses a 3-day route, the other chooses a 4-day route:
a. P1 and P2:

W = W1 +W2 = 2W0 − 4

2∑
i=1

di(biq + big)− 2

2∑
i=1

dibig

b. P1 and P2, P3:

W = W1 +W2 = 2W0 − 4

2∑
i=1

dibiq − 2

2∑
i=1

di(biq + big)

c. P1 and P4:

W = W1 +W2 = 2W0 − 4

2∑
i=1

di(biq + big)− 2

2∑
i=1

3dibiq

d. Other situations:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(biq + big)

(4) Both go mining, with the optimal strategy being P2, P3:

W = W1 +W2 = 2W0 − 2

2∑
i=1

di(biq + big)− 4

2∑
i=1

dibiq

For ”Scenario 3,” the best option for both players is the above
strategy, which yields the maximum value W .
3. Model solution

Use C++ to solve 12 situations and perform simulation
tests. The results of the 12 cases are:

19080 18540 19020 19290 19180 19290
19400 18910 19180 18910 19290 19400

Use the RAND function and the system time as the random
seed to generate random integers from 1 to 12. Use C++ to
perform 100 simulations which preliminary analysis showed
was sufficient for the mean outcome to stabilize and take the
average as the simulation result, which is 10147.

5.2 Only know the weather of the day and the
player’s condition after the day ends

5.2.1 Strategies that players should generally adopt

Because after the end of each day’s game, players will deter-
mine tomorrow’s action plan based on their own funds and
resources, and at the same time know other players’ funds and
resources to infer other players’ action plans. In this case,
players need to choose the movement plan that consumes the
least funds and resources for the next day.

5.2.2 Specific Analysis and Discussion of the “Sixth
Level”

Since the map of the sixth level is the same as that of the fourth
level, and only the weather conditions of the day are known,
players can determine the action plan for the next day based on
the general strategy adopted by players in the face of unknown
weather in question 2. Assume that the three players in the
sixth level are in a competitive relationship with each other,
and there is no alliance between players.
1. Introduce 0-1 variables to control the weather

x1 + x2 + x3 = 1, x1, x2, x3 ∈ {0, 1}

2. Dynamic data prediction for players
Assume that the unknown location of the m person after the

nth iteration is Rmn, and combine the map of the ”sixth level”
to predict the dynamic data of the player. Draw the route on
the map of ”Level 6” as shown below Fig. 8.
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Figure 8: ”Level 6” map

(1) Mining Constraints
a. After the n iteration, the player is around the mine:

|18−Ron| = 5 or 1, |18−Ron| = 5 or 1, a, b ∈ {1, 2, 3}

b. The player has enough funds to go to the mine and mine
for at least one day:

Won ≥ 6

2∑
i=1

(xibipdi + xibigdi + xibiqdi)

or

Won ≥ 6

2∑
i=1

(xibipdi + xibigdi + xibiqdi), a, b ∈ {1, 2, 3}

Players can go mining Rn(n+1) = 18 or Rn(n+1) = 18 if
conditions a.b. are met.
(2) Path Restriction

When two players are in the same area and are ready to
move to the next area:

|Ron −Ron| = 0

Won ≥ 2

2∑
i=1

(xibipidi + xibipidi + xibipidi)

Won ≥ 2

2∑
i=1

(xibipidi + xibipidi + xibipidi)

The two players do not move to the same area:

Rn(n+1) ̸= Rb(n+1)

(3) Village Restrictions
a. After the n iteration, the player is around the village:

|14−Ron| = 5 or 1, |14−Ron| = 5 or 1, a, b ∈ {1, 2, 3}

b. The player has enough funds to go to the village, and
must go to the village to replenish resources before moving:

2

2∑
i=1

(xibipdi + xibigdi + xibiqdi) ≤ Wan

Wan ≤ 4

2∑
i=1

(xibipdi + xibigdi + xibiqdi)

or 2

2∑
i=1

(xibipdi + xibigdi + xibiqdi) ≤ Wbn

Wbn ≤ 4

2∑
i=1

(xibipdi + xibigdi + xibiqdi), a, b ∈ {1, 2, 3}

(4) Competition between players who reach a special point at
the same time

a. Arrive at the mine at the same time. Assume that people
with sufficient funds will enter the mine to mine at this time,
that is , players with less funds are unwilling to halve the min-
ing benefits (players will lose money).

b. When they arrive at the village at the same time, those
who do not have enough resources will definitely enter the vil-
lage, while those who have enough resources will not enter the
village.

c. Players all consider their own interests in the game. If
the level differences among players are not big, the final value
will be smaller after the game ends.

6 Conclusions
1. Advantages

(1) Using dynamic programming to solve the knapsack
problem. Dynamic programming has memory, and the sub-
problems needed in the new problem can be directly extracted,
avoiding repeated calculations and thus saving time.

(2) The knowledge of game theory is used to simplify the
abstract concepts of the fifth and sixth levels to facilitate the
solution and analysis of random problems.

(3) Converting graph theory problems into dynamic op-
timization problems provides a structured and computable
framework for solving complex routing decisions. This inte-
gration greatly enhances the practicality of the model by trans-
forming an intuitive but vague map-based decision into a se-
ries of well-defined optimization steps with clear objectives
and constraints. The process is illustrated in Figure 9, which
shows how the spatial problem (the map and weather) is ab-
stracted into a graph, then into a state-space model, and finally
solved via DP to yield an optimal policy. This methodological
pipeline is a core contribution of our work.
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Figure 9: Modeling Framework: From Graph Theory to Dy-
namic Optimization

2. Disadvantages:
(1) There is a lack of empirical validation of model results

against alternative strategies (e.g., greedy algorithms) or real-
world data, which results in uncertain error margins compared
with actual processes or simpler benchmarks. Future work
should include such validation.

(2) In the cycle analysis of mines and villages, the accuracy
of the solution is reduced due to the unknown number of cy-
cles. Heuristics were used to approximate the optimal number.

(3) The models are developed specifically for the desert
game’s ruleset (specific resources, weather, map structures).
Generalizing the framework to other domains (e.g., logis-
tics with fuel constraints, multi-robot exploration with charg-
ing stations) would require adapting the cost functions, con-
straints, and state definitions, but the core methodology of
combining DP for planning, graph search for routing, and
game theory for interaction remains promising. Future re-
search should explore this generalization.

(4) Scalability to larger maps or more players needs assess-
ment, potentially requiring more efficient algorithms or ap-
proximations.
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Figure 10: ”Level 1” description matrix

Sets:

a = {1, 2}
a1 = {1, 2, 3}
b = {1, 2, 3, 4}
link(a, b)
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Data:

d = [5, 10], bq = [8, 6], bg = [5, 7], bs = [10, 10],

w = [5, 10], p = 1000

Initialization:
fv(1) = 0

Revenue and Resource Use Definitions:

rw = rw1 + rw2

rw1 =
∑
i∈a

di · ki

rw2 = 2
∑
i∈a

di · ki+2

rw1 < w0

rw2 < w0 − rw1 + p · (t4 − 1)

Capacity Constraint:∑
i∈a

ci · (ki + ki+2)−
∑
i∈a

(xi1 + xi4) ≤ M1

Total Time at Each Stage:

tj = tgj + tqj + tsj , ∀j ∈ b

Resource Consumption:

xij =

{
3 · (bgi · tgj + bqi · tqj + bsi · tsj) , if j = 4

2 · (bgi · tgj + bqi · tqj) + bsi · tsj , otherwise

Residual Value:

rwp =
1

2

∑
i∈a

di ·

ki + ki+2 −
∑
j∈b

xij


Forward Value Computation:

fvi+1 = max (fv1i + ki · wi) , ∀i ∈ a

Variable Constraints:

ki ≤ mi, ∀i ∈ a

ki −
∑

j∈{1,2,3}∪{4}

xij > 0, ∀i ∈ a

Objective Function (to Maximize):

maxZ = w0 + p · (t4 − 1) + rwp− rw

Figure 11: Results table of the “first level”

Figure 12: ”Level 2” description matrix

Sets:

a = {1, 2} : parameters d, bq, bg, bs,m
b = {1, 2, 3}
b1 = {1, 2, 3, 4} : with k(i)

c = {1, 2, . . . , 9} : with time variables t(n)
link(a, b1) : x(i, j)

Data:

w0 = 10000

d = [5, 10]

bq = [3, 4]

bg = [9, 9]

bs = [10, 10]

p = 1000
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Figure 13: Results table of the “Second Level”

Figure 14: ”Level 3” description matrix

(1) Total supply constraint:∑
i∈a

m(i) < 1200

(2) Time assignment for last 3 periods:∑
n∈c
n≥7

t(n) = 8

(3) First-stage remaining wealth:

w1 = w0 −
∑
i∈a

d(i) · k(i)

(4) Total working time constraint:∑
n∈b

t(n) ≤ 30

(5) Maximum mining quantity:

k(i) ≤ m(i), ∀i ∈ a

Figure 15: Descriptive matrix for the ”Fourth Level”

(6) Resource availability constraint (stage-wise):

k(i)− 2 [bq(i)(t(1)− t(4)) + bg(i)(t(2)− t(5))]− bs(i)(t(3)− t(6))

− 3 [bq(i)t(4) + bg(i)t(5) + bs(i)t(6)] ≥ 0, ∀i ∈ a

(7) Wealth after mining and profit:

w1 = w0 −
∑
i∈a

d(i) · k(i) + p · (t(4) + t(5) + t(6)− 1)

(8) First player’s individual constraint:

k(1) + k(3)− 2 · (bg(1) + bq(1)− bs(1) · t(3)) ≥ 0

(9) Second player’s individual constraint:

k(2) + k(4)− 2 · (bg(2) + bq(2)− bs(2) · t(3)) ≥ 0

(10) Resource consumption calculation:

x(i, j) = 2·(bq(i)t(j) + bg(i)t(j) + bs(i)t(j)) , ∀(i, j) ∈ link(a, b1)

maxZ = w0 −
∑
i∈a

d(i) · k(i)−
∑
i∈a

d(i) · k(i+ 2)

+
1

2

∑
i∈a

k(i) + k(i+ 2)−
∑
j∈b1

x(i, j)


Listing 1: C++ Program for Mining Strategy Evaluation

# i n c l u d e <i o s t r e a m>
# i n c l u d e <iomanip>
# i n c l u d e <c s t d l i b >
# i n c l u d e <c t ime>
# d e f i n e random ( a , b ) ( r and ( )%( b−a )+ a )

u s i n g namespace s t d ;

i n t s igma1 ( i n t *a , i n t *b , i n t * c )
{

i n t r e s u l t = 0 ;
f o r ( i n t i = 0 ; i < 2 ; i ++)
{

r e s u l t = r e s u l t + ( b [ i ] + c [ i ] ) * a [ i ] ;
}
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r e t u r n r e s u l t ;
}

i n t s igma2 ( i n t *a , i n t *b )
{

i n t r e s u l t = 0 ;
f o r ( i n t i = 0 ; i < 2 ; i ++)
{

r e s u l t = r e s u l t + a [ i ] * b [ i ] ;
}
r e t u r n r e s u l t ;

}

i n t main ( )
{

i n t f [ 1 0 0 ] , sum = 0 , av ;
( ( i n t ) t ime ( 0 ) ) ; / / G e n e r a t e random s e e d s . Rep lace 0 wi th NULL and you w i l l s e e 2 rows .

f o r ( i n t i = 0 ; i < 100 ; i ++)
{

f [ i ] = ( r and ( ) % (11 − 0 + 1 ) ) + 0 ;
}

i n t bg [ 2 ] = {9 , 9} , bq [ 2 ] = {3 , 4} , bq2 [ 2 ] = {6 , 8} , bq3 [ 2 ] = {9 , 12} , bq4 [ 2 ] = {12 , 16} ;
i n t w0 = 10000 , w[ 2 0 ] , d [ 2 ] = {5 , 10} ;

w[ 0 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 2 − 4 * sigma2 ( bg , d ) ;
w[ 1 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 2 − 8 * sigma2 ( bg , d ) ;
w[ 2 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 4 − 4 * sigma2 ( bq , d ) ;
w[ 3 ] = 2 * w0 − sigma1 ( d , bg , bq2 ) * 2 − 4 * sigma2 ( bq , d ) ;
w[ 4 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 2 − 4 * sigma2 ( bq2 , d ) ;
w[ 5 ] = 2 * w0 − sigma1 ( d , bg , bq2 ) * 2 − 4 * sigma2 ( bq , d ) ;
w[ 6 ] = 2 * w0 − sigma1 ( d , bg , bq3 ) * 2 ;
w[ 7 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 4 − 2 * sigma2 ( bq3 , d ) ;
w[ 8 ] = 2 * w0 − sigma1 ( d , bg , bq3 ) * 2 − 4 * sigma2 ( bq , d ) ;
w[ 9 ] = 2 * w0 − sigma1 ( d , bg , bq ) * 4 − 2 * sigma2 ( bq3 , d ) ;
w[ 1 0 ] = 2 * w0 − sigma1 ( d , bg , bq4 ) * 2 ;
w[ 1 1 ] = 2 * w0 − 2 * sigma1 ( d , bg , bq ) − 4 * sigma2 ( d , bq ) ;

f o r ( i n t i = 0 ; i <= 1 1 ; i ++)
c o u t << w[ i ] << ’\ t ’ ;

f o r ( i n t k = 0 ; k < 100 ; k ++)
{

sum = sum + w[ f [ k ] ] ;
av = sum / ( k + 1 ) ;

}

c o u t << av ;
r e t u r n 0 ;

}
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