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Abstract—The combination of artificial intelligence (AI) 

and bioinformatics is driving a leap forward in genomics and 
biological research, especially in the electronic cloning and 
biological analysis of genes. AI can analyze large-scale 
genomic data, identify gene variations and predict gene 
functions through machine learning algorithms, thereby 
improving the efficiency and accuracy of gene cloning. 
Electronic cloning technology combines computer modeling 
and experimental data to simulate the gene expression process, 
greatly accelerating the progress of gene function research. In 
the secondary metabolic pathway of plants, shikimate 
dehydrogenase (SDH) is one of the key enzymes involved in 
the regulation of the shikimate pathway, which is a key step in 
the synthesis of important plant secondary metabolites such as 
phenylpropene compounds, flavonoids and lignin. Shikimate 
dehydrogenase catalyzes the conversion of shikimate to 
coumaric acid, which is the basis of plant defense mechanisms, 
antioxidants and disease resistance. In this study, AI tools were 
used to deeply analyze the gene expression patterns related to 
shikimate dehydrogenase, and the shikimate dehydrogenase 
sequence gene of Escherichia coli was used as a probe to clone 
and analyze the Medicago sativa shikimate dehydrogenase gene. 
The results showed that the cloned shikimate dehydrogenase 
gene of M. sativa was 469 bp in length and had 5 open reading 
frames (ORFs), of which ORF3 was the longest, with a total 
length of 258 bp, encoding 85 amino acids. The molecular 
weight of the protein was 9370.70, and the theoretical 
isoelectric point pI was 5.67, indicating that it was a functional 
protein on abiotic membranes. Through further bioinformatics 
analysis, it was speculated that the gene may play an important 
role in the secondary metabolism of M. sativa, and its 
expression pattern may be closely related to the growth and 
environmental adaptability of the plant. 
 
Index Terms—Artificial intelligence, bioinformatics, 
Medicago sativa, shikimate dehydrogenase, in silico cloning  

 

I. INTRODUCTION 
Shikimate dehydrogenase (SDH) is a key enzyme in the 

shikimate pathway, which plays a vital role in the synthesis of 
aromatic amino acids and their precursors in plants. This 
pathway is central to plant secondary metabolism, contributing 
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not only to the production of amino acids such as tryptophan, 
tyrosine, and phenylalanine, but also to certain plant hormones 
and a vast array of secondary metabolites (Fig. 1). Beyond 
metabolism, the shikimate pathway influences plant growth, 
environmental adaptation, stress resistance, and yield. Its 
industrial significance is also notable, particularly as shikimic 
acid serves as a key precursor for the synthesis of the antiviral 
drug oseltamivir (Tamiflu)[1]. Genetic engineering of this 
pathway offers promising avenues for enhancing the production 
of valuable compounds and improving agronomic traits[1]. 

Medicago sativa (alfalfa), an important forage and green 
manure crop, exhibits shikimate pathway activity that is closely 
linked to stress tolerance and biomass yield. Although recent 
genetic studies on M. sativa have increasingly focused on 
stress-related genes, functional characterization of SDH—a 
pivotal enzyme in secondary metabolism— has remained 
limited[2]. The integration of artificial intelligence (AI) with 
bioinformatics has created new opportunities for accelerating 
gene discovery and functional prediction[3-4]. Yet, current 
approaches often rely on generalized bioinformatics tools that 
lack custom analysis tailored to non-model species such as 
alfalfa, and most conventional methods do not fully leverage AI 
for predictive functional insight. 

To address these limitations, this study employs a targeted in 
silico cloning strategy combined with multi-level 
bioinformatics analysis to identify and characterize the SDH 
gene from M. sativa. We present the first report of a putative 
SDH gene in alfalfa, comprising 469 bp with five open reading 
frames (ORFs), among which ORF3 encodes an 85-amino acid 
protein. Our analysis reveals key protein characteristics 
including a molecular weight of 9370.70, an acidic isoelectric 
point (pI) of 5.67, hydrophilic nature, and cytoplasmic 
localization supported by the absence of signal peptides and 
transmembrane domains. Furthermore, functional motif 
identification and phylogenetic analysis provide insight into the 
evolutionary conservation and functional role of SDH in 
legumes. 

These findings establish a essential genetic resource for 
future research on metabolic engineering in alfalfa, and 
demonstrate a bioinformatics workflow that can be augmented 
with AI tools for improved gene function prediction. This work 
not only facilitates further functional validation of SDH but also 
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provides a foundation for enhancing stress resistance and yield 
in M. sativa through molecular breeding. 
 

 
Fig. 1. The shikimate pathway. PEP: Phosphoenolpyruvate; 
E4P: D-erythrose 4-phosphate; DAHP: 3-deoxy-d-arabino-
heptulosonic acid 7-phosphate; DHQ: 3-dehydroquinate; DHS: 
3-dehydroshikimate; SA: Shikimate; S3P: Shikimate-
3phosphate; EPSP: 5-enolpyruvylshikimate-3-phosphate; CHA: 
Chorismate; Phe: Phenylalanine; Tyr: Tyrosine; Trp: 
Tryptophan.  
 
 

 
Fig. 2. Application of shikimic acid in plants. 
 

II. RELATED WORK 
The shikimate pathway is a fundamental metabolic route in 

plants, bacteria, and fungi, serving as the crucial bridge between 
primary carbon metabolism and the biosynthesis of aromatic 
amino acids and a vast array of secondary metabolites. Within 
this pathway, shikimate dehydrogenase (SDH, EC 1.1.1.25) 
catalyzes the reversible reduction of 3-dehydroshikimate to 
shikimate, utilizing NADPH as a cofactor. This reaction is a 
critical control point, making SDH a subject of significant 
interest in both basic research and applied biotechnology. 
 

A.Studies on SDH Genes in Various Species 
Extensive research has been conducted on SDH genes across 

different kingdoms. In bacteria, such as Escherichia coli, the 
aroE gene encoding SDH has been well-characterized, and its 
structure-function relationship has been elucidated, providing a 
foundational model for understanding enzyme kinetics and 
mechanism. In plants, SDH has been identified and studied in 
model species like Arabidopsis thaliana and major crops such 
as rice (Oryza sativa). These studies have confirmed SDH's 

pivotal role in development and stress responses. For instance, 
the silencing of SDH in Arabidopsis led to severe 
developmental defects, underscoring its indispensability. 
Furthermore, recent work has begun to explore SDH in 
bioenergy crops like Panicum virgatum (switchgrass), 
highlighting its potential in engineering pathways for improved 
biomass and stress resilience. While these studies provide a 
general framework for understanding SDH, functional 
characteristics can vary significantly between species due to 
evolutionary divergence and lineage-specific adaptations. 

B. Research Gap and Objective 
While SDH is recognized as a critical enzyme, its specific 

sequence, structure, and functional attributes in Medicago 
sativa, a legume crop of immense agricultural importance, 
remain poorly characterized. Previous studies in other species 
provide a template but cannot directly be extrapolated. The 
conventional bioinformatics approaches used in many prior 
SDH studies, while useful, lack the predictive power of modern 
AI techniques. Therefore, there is a clear need for a 
comprehensive study that not only identifies and characterizes 
the M. sativa SDH gene using established in silico methods but 
also frames these findings within the modern context of AI-
driven biological discovery. This study aims to fill this gap by 
conducting a foundational bioinformatic characterization of M. 
sativa SDH and explicitly outlining a pathway for its future 
validation and application using advanced computational 
intelligence, thereby contributing to the genetic improvement 
of this vital crop. 
 

III. ANALYSIS METHODS AND TOOLS 

A. In silico cloning of SDH from M. sativa 
The probe amino acid sequence of the E. coli SDH used in 

this study is following:  
METYAVFGNPIAHSKSPFIHQQFAQQLNIEHPYGRVL

APINDFINTLNAFFSAGGKGANVTVPFKEEAFARADELT
ERAALAGAVNTLMRLEDGRLLGDNTDGVGLLSDLERL
SFIRPGLRILLIGAGGASRGVLLPLLSLDCAVTITNRTVS
RAEELAKLFAHTGSIQALSMDELEGHEFDLIINATSSGIS
GDIPAIPSSLIHPGIYCYDMFYQKGKTPFLAWCEQRGSK
RNADGLGMLVAQAAHAFLLWHGVLPDVEPVIKQLQEE
LSA.  

Next, the probe sequence was searched with the M. sativa 
EST database using the tBlastn tool in NCBI, and gene 
sequences with a match greater than 50% were selected and 
downloaded in FASTA format; contig-0 and contig-1 were 
obtained by gene splicing using BioEdit "CAP conting 
assembly program". Finally, the M. sativa shikimate 
dehydrogenase cDNA sequence was predicted by ORF Finder 
in NCBI to determine whether there was a gene with the 
expected function, and finally the new gene fragment was 
determined. The analysis tools are shown in Table 1. 

TABLE I 
TOOLS USED TO PREDICT GENE STRUCTURE 

Search content Tools 

Sequence acquisition NCBI 



 

https://www.ncbi.nlm.nih.gov/ 

Sequence splicing BioEdit 

Open reading frame 
identification 

ORFfinder 

https://www.ncbi.nlm.nih.gov/orffinder/ 
 

B. Bioinformatics Analysis of the SDH in M. sativa 
The obtained M. sativa SDH gene sequence was analyzed 

using bioinformatics software(Sequence alignments were auto-
assembled via BioEdit CAP, with manual curation of ambiguous 
regions. , and an evolutionary tree was constructed by analyzing 
and predicting the physicochemical properties, hydrophilicity 
and hydrophobicity, functional sites, transmembrane analysis, 
signal peptides, subcellular localization, secondary structure, 
tertiary structure, molecular evolution, etc. of the protein 
encoded by the gene. The specific analysis content and tool 
software are shown in Table 2. 

TABLE II 
TOOLS USED TO PREDICT PROTEIN STRUCTURE AND 

FUNCTION 

Search content Tools and Parameters 

Base composition Bioedit（Nucleotide Composition, 
Restriction Map） 

Physical and 
chemical properties 

http://web.expasy.org/protparam/ 

Hydrophilicity/hydro
phobicity 

http://web.expasy.org/protscale/ 

Functional sites https:/web.expasy.org/ prosite/ 

Transmembrane 
analysis 

TMHMM2.0,Default settings (membrane 
probability >0.5; N-tail inside) 

https://services.healthtech.dtu.dk/services
/TMHMM-2.0/ 

 

Subcellular 
localization 

https://wolfpsort.hgc.jp/ 

Signal peptide https://services.healthtech.dtu.dk/service.ph
p?SignalP-5.0 

Secondary structure SOPMAD,Window width=17; Decision 
constants: Helix (≥4), Sheet (≥4) 

https://npsa-prabi.ibcp.ft/cgi-
bin/npsaautomat.pl?page=npsa%20 
sopma.html 

Phosphorylation site https://services.healthtech.dtu.dk/services/N
etPhos-3.1/ 

Tertiary structure http://swissmodel.expasy.org/repository/ 

Homologous 
evolutionary tree 

MEGA11,Neighbor-Joining (NJ) tree; 
Bootstrap=1000 replicates; Poisson 
correction 

 

III. AMINO ACID COMPOSITION ANALYSIS OF SDH IN M. SATIVA 
Amino 

acid 
Number Proportion Amino 

acid 
Number Proportion 

Ala(A) 9 10.6% Ile(I) 7 8.2% 
Arg(R) 3 3.5% Leu(L) 8 9.4% 
Asn(N) 2 2.4% Lys(K) 3 3.5% 
Asp(D) 5 5.9% Met(M) 3 3.5% 
Cys(C) 3 3.5% Phe(F) 4 4.7% 
Gln(Q) 3 3.5% Pro(P) 4 4.7% 
Glu(E) 4 4.7% Ser(S) 7 8.2% 
Gly(G) 8 9.4% Thr(T) 2 2.4% 
His(H) 4 4.7% Trp(M) 2 2.4% 
Val(V) 1 1.2% Tyr(Y) 3 3.5% 

 

A. In silico cloning results of shikimate dehydrogenase from 
M. sativa 

The EST sequences obtained by TBLASTN were saved in 
FASTA format. The sequences were spliced using Bioedit 
software to finally obtain a contig with a length of 469bp. Then, 
through the prediction tool ORF Finder in NCBI, the M. sativa 
SDH sequence has 5 ORFs, of which the longest ORF is 258bp 
long. The protein it encodes contains 86 amino acids, and the 
sequence is: 

MDELEGHEFDLIINATSSGISGDIPAIPSSLIHPGIYCYD
MFYQKGKTPFLAWCEQRGSKRNADGLGMLVAQAAHA
FLLWHRCSA. Sequences with high homology were found 
through BLAST. Using the Bioedit tool, the base composition 
can be obtained by analyzing the electronic cloning splicing 
sequence, among which the proportion of adenine A is 28.14%; 
the proportion of cytosine C is 27.08%; the proportion of 
guanine G is 22.17%; and the proportion of thymine T is 
22.60%. Analysis of restriction enzyme positions of the 
electronically cloned spliced sequence revealed that the 
restriction enzyme sites of the nucleotide sequence of the M. 
sativa SDH include AflIII, AlwI, AseI, and the like. 

 

B. Analysis of the physicochemical properties of  M. sativa 
shikimate dehydrogenase protein 

The ExPASy-Protparam tool was used to analyze the 
physicochemical properties of M. sativa shikimate 
dehydrogenase. The analysis showed that the number of amino 
acids was 85, the molecular weight of the protein was 9370.70, 
the theoretical isoelectric point pl was 5.67, the molecular 
formula was C419H636N112O121S6, the instability coefficient was 
35.85, it was a stable protein, the fat coefficient was 82.82, and 
the average hydrophobicity was -0.031. Its amino acid 
composition is shown in Table 3. There are 9 negatively 
charged amino acids (Asp + Glu), 6 positively charged amino 
acids (Arg + Lys), Ala accounts for the largest proportion, 
10.6%, there is no pyrrolysine (Pyl) and selenocysteine (Sec), 
and the protein is an acidic protein. 

C. Prediction and analysis of hydrophilicity/hydrophobicity of 
M. sativa shikimate dehydrogenase 

The ExPASy-ProtScale online software was used to predict 



 

the hydrophilicity/hydrophobicity of the amino acid protein 
encoded by the M. sativa SDH gene. The results are shown in 
Figure 3. Analysis of the figure shows that the larger the 
negative value, the weaker the hydrophilicity of the protein; 
conversely, the larger the positive value, the stronger the 
hydrophobicity of the protein. The value between +2 and -3 
indicates that the amino acid is amphoteric. The highest score 
of the polypeptide chain is at the 69th position of the protein, 
which is +1.689, and the lowest score is at the 58th and 59th 
positions of the protein, which is -2.533, so it is a hydrophilic 
protein. It can also be observed that the negative peak is 
significantly higher than the positive peak, and it is inferred that 
the M. sativa shikimate dehydrogenase is hydrophilic. This is 
consistent with the analysis results of the ExPASy-Protparam 
software. 

 
Fig. 3. The hydrophilicity/hydrophobicity prediction results of 
M. sativa SDH. 
 

D. Prediction and analysis of signal peptide and 
transmembrane domain of M. sativa SDH  

The signal peptide is a peptide segment consisting of 20 to 
30 amino acid residues at the N-terminus of the nascent peptide 
chain of a secretory protein. It determines the modification of 
certain amino acid residues and is often used to guide the 
transmembrane transfer of proteins. The signal peptide 
structure of M. sativa SDH was predicted using the Signalp5.0 
online software. The prediction results are shown in Figure 4. 
The results show that the probability of the protein being a 
signal peptide is 0.0015, and it can be inferred that the protein 
is a non-secretory protein，and the absence of signal peptides 
(SignalP5.0 score=0.0015) and transmembrane domains 
(TMHMM) confirms cytosolic localization. This aligns with 
SDH’s role in cytoplasmic shikimate metabolism [1,3] and 
suggests direct interaction with cytoplasmic substrates like 
shikimate. 

 
Fig. 4. Protein signal peptide prediction results of M. sativa 
SDH. 

The transmembrane domain is the main part where the 
membrane-intrinsic protein binds to the membrane lipids. It is 
generally composed of about 20 hydrophobic amino acids to 
form an alpha helix, which is fixed to the cell membrane and 
acts as an anchor. The TMHMM-2.0 online tool was used to 
predict the transmembrane domain of the protein. The results 
are shown in Figure 5. At 1.0, it is the outer boundary of the cell 
membrane, and 0 is inside the cell membrane. This study 
predicted a protein sequence with a length of 85 amino acids, 
but no predicted transmembrane helices (TMHs) were found, 
indicating that the protein is likely to contain no transmembrane 
regions, or these regions may be too short or do not meet the 
prediction criteria of the TMHMM model. Overall, this protein 
may be a non-transmembrane protein or located inside the cell. 
Further, the protein was annotated and the functional site 
prediction was performed using ExPASy-Prosite. The results 
showed that the 14-17, 58-63, and 67-72 amino acids were the 
predicted functional sites of the protein. 

 
Fig. 5. Protein transmembrane domain prediction results of M. 
sativa SDH. 
 

E. Structural prediction and analysis of M. sativa SDH  

The local spatial structure of the polypeptide main chain of 
M. sativa SDH was analyzed using the online software SOPMA. 
The results showed that in the secondary structure of the protein, 
the largest proportion was random coils, accounting for 48.24%, 
with 41; followed by α helices, accounting for 31.76%, with 
27; there were 17 extended chains, accounting for 20%; there 
was no β fold. 



 

The SWISS-MODEL online homology modeling method was 
used to analyze the M. sativa SDH protein, predict its tertiary 
structure, and use the ball-and-stick model to display all 
aromatic amino acids. The results are shown in Figure 6, A is 
the predicted image of the tertiary structure of the protein, and 
the blue part shown in B is the position of the aromatic amino 
acids in the protein stick-and-ball model. 

 

  
 
Fig. 6. Protein tertiary structure and predicted position of 
aromatic amino acids. 
 

F. Construction of the phylogenetic tree of M. sativa SDH  

Using the results from ORF Finder in NCBI, we obtained 
homologous sequences of various species through BLAST 
analysis, and then used the software MEGA11 to analyze the 
evolutionary tree structure (Figure 7). We searched for protein 
sequences similar to the protein sequence and performed 
multiple sequence alignment on them to construct the molecular 
evolutionary phylogenetic tree of the protein in plant species 
(using the neighbor-joining method, NJ). 

Phylogenetic analysis indicates a clear evolutionary 
relationship among the SDH genes from the bacterial species 
examined. Sequences from members of the Enterobacteriaceae 
family—including Escherichia coli , Shigella flexneri , Shigella 
sonnei , Klebsiella pneumoniae , and Salmonella enterica —
form a tightly clustered monophyletic clade with strong 
bootstrap support (values of 97 and 47), demonstrating high 
sequence similarity and suggesting a relatively recent common 
ancestor. In contrast, Staphylococcus agnetis (phylum 
Firmicutes) represents a more distantly related lineage. Its 
position as an outer group, with a bootstrap value of 54 at the 
divergent node, is consistent with its taxonomic distinction 
from the Enterobacteriaceae, underscoring the divergence 
between these bacterial groups. 

 
Fig. 7. Phylogenetic analysis of M. sativa SDH. 

 

IV. CONCLUSION 

This study focused on the SDH of M. sativa and successfully 
obtained the full-length sequence of the gene using electronic 
cloning technology. Through a series of bioinformatics analysis 
tools and methods, the biological characteristics of the gene and 
the protein it encodes were systematically analyzed[5]. The 
results of gene sequence analysis revealed the characteristics of 
its base composition, potential restriction sites and sequence 
variation information, laying the foundation for subsequent 
gene function research and application. In terms of protein 
sequence analysis, we deeply explored key factors including 
functional sites, domains, physicochemical properties, 
hydrophilic and hydrophobic properties. In addition, signal 
peptide prediction, transmembrane structure analysis and 
subcellular localization analysis also provide an intuitive 
understanding of the distribution and action location of the 
protein in the cell. Further secondary and tertiary structure 
predictions provide a spatial structural basis for revealing the 
functional mechanism of the protein, while the phylogenetic 
tree constructed based on multiple sequence alignment and 
molecular evolution analysis reveals the evolutionary 
relationship of the gene, providing important clues for inferring 
its evolutionary process and genetic differences between 
species. 

These research results not only provide key data support for 
our in-depth understanding of the SDH mechanism of M. sativa 
growth and development, but also provide a theoretical basis 
for the gene function and metabolic regulation of M. sativa. By 
revealing the specific function of this gene in the metabolic 
pathway of M. sativa, these data provide an important reference 
for M. sativa variety improvement, metabolic regulation and 
stress resistance research. At the same time, the gene sequence 
and protein characteristic analysis obtained in this study 



 

provide a solid theoretical basis for subsequent functional 
verification experiments, and provide new ideas and directions 
for further exploring the application potential of M. sativa in 
agricultural production. 

V. DISCUSSION 

While this study utilized conventional bioinformatics tools to 
successfully clone and characterize the M. sativa SDH gene, the 
integration of AI in future work could profoundly deepen the 
interpretation of our findings and accelerate functional 
validation. The specific features of the M. sativa SDH sequence 
uncovered here—such as its acidic pI (5.67), hydrophilic nature, 
absence of transmembrane domains, and key functional 
motifs—provide an ideal foundation for AI-driven predictive 
modeling. 

For instance, the amino acid sequence we identified could be 
used as direct input for deep learning models like AlphaFold [9] 
to generate a high-accuracy tertiary structure model, moving 
beyond the preliminary model presented in this study. This 
could reveal the spatial arrangement of catalytic residues and 
suggest potential binding mechanisms for substrates or 
inhibitors. Furthermore, AI algorithms could analyze our 
phylogenetic results in a broader context, identifying conserved 
regulatory elements across legumes that control SDH 
expression under stress conditions [11, 16]. 

The non-secretory, cytosolic localization predicted for the 
SDH protein indicates its role in intracellular metabolism. AI 
models could integrate this subcellular localization data with 
public transcriptomic datasets to build predictive models of 
how M. sativa SDH expression correlates with drought or 
pathogen challenge, thereby guiding targeted experimental 
validation [12]. Finally, the unique sequence motifs we reported 
could help train convolutional neural networks to identify SDH 
genes with similar regulatory features in other crops, supporting 
comparative genomics and precision breeding efforts [8, 13]. 

In conclusion, the bioinformatic profile of M. sativa SDH 
established in this work provides the essential data layer upon 
which AI and machine learning can be deployed to transition 
from in silico characterization to in planta functional analysis 
and metabolic engineering. 

While this study utilized conventional bioinformatics tools to 
successfully clone and characterize the M. sativa SDH gene, the 
integration of AI in future work could profoundly deepen the 
interpretation of our findings and accelerate functional 
validation. The specific features of the M. sativa SDH sequence 
uncovered here—such as its acidic pI (5.67), hydrophilic nature, 
absence of transmembrane domains, and key functional 
motifs—provide an ideal foundation for AI-driven predictive 
modeling. 

For instance, the amino acid sequence we identified could be 
used as direct input for deep learning models like AlphaFold [9] 

to generate a high-accuracy tertiary structure model, moving 
beyond the preliminary model presented in this study. This 

approach has demonstrated remarkable success in predicting 
protein structures with atomic-level accuracy, as exemplified 
by AlphaFold’s performance in the CASP14 competition. 
Such a model could reveal the spatial arrangement of catalytic 
residues and suggest potential binding mechanisms for 
substrates or inhibitors, thereby facilitating targeted 
mutagenesis or inhibitor design. Furthermore, AI algorithms 
could analyze our phylogenetic results in a broader context, 
identifying conserved regulatory elements across legumes that 
control SDH expression under stress conditions [11, 16]. For 
example, random forest models could be employed to integrate 
transcriptomic data from public repositories like PhytoMine, 
enabling the prediction of SDH expression patterns under 
drought or pathogen challenge and guiding subsequent 
experimental validation [12]. 

Additionally, the unique sequence motifs we reported could 
help train convolutional neural networks to identify SDH genes 
with similar regulatory features in other crops, supporting 
comparative genomics and precision breeding efforts [8, 13]. 
Beyond expression prediction, AI-powered tools such as 
DeepCRISPR [15] could leverage the gene sequence information 
to design high-efficiency sgRNAs for CRISPR-based knockout 
or editing of M. sativa SDH, thereby functionally validating its 
role in stress adaptation or metabolic flux. DeepCRISPR has 
already been successfully applied in animal and plant systems 
to improve the efficiency and specificity of gene editing, 
suggesting its strong potential for use in alfalfa. 

In conclusion, the bioinformatic profile of M. sativa SDH 
established in this work provides the essential data layer upon 
which AI and machine learning can be deployed to transition 
from in silico characterization to in planta functional analysis 
and metabolic engineering. 
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