In Silico Cloning and Bioinformatics Analysis of Shikimate Dehydrogenase Gene from
Medicago sativa
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Abstract—The combination of artificial intelligence (AI)
and bioinformatics is driving a leap forward in genomics and
biological research, especially in the electronic cloning and
biological analysis of genes. Al can analyze large-scale
genomic data, identify gene variations and predict gene
functions through machine learning algorithms, thereby
improving the efficiency and accuracy of gene cloning.
Electronic cloning technology combines computer modeling
and experimental data to simulate the gene expression process,
greatly accelerating the progress of gene function research. In
the secondary metabolic pathway of plants, shikimate
dehydrogenase (SDH) is one of the key enzymes involved in
the regulation of the shikimate pathway, which is a key step in
the synthesis of important plant secondary metabolites such as
phenylpropene compounds, flavonoids and lignin. Shikimate
dehydrogenase catalyzes the conversion of shikimate to
coumaric acid, which is the basis of plant defense mechanisms,
antioxidants and disease resistance. In this study, Al tools were
used to deeply analyze the gene expression patterns related to
shikimate dehydrogenase, and the shikimate dehydrogenase
sequence gene of Escherichia coli was used as a probe to clone

and analyze the Medicago sativa shikimate dehydrogenase gene.

The results showed that the cloned shikimate dehydrogenase
gene of M. sativa was 469 bp in length and had 5 open reading
frames (ORFs), of which ORF3 was the longest, with a total
length of 258 bp, encoding 85 amino acids. The molecular
weight of the protein was 9370.70, and the theoretical
isoelectric point pl was 5.67, indicating that it was a functional
protein on abiotic membranes. Through further bioinformatics
analysis, it was speculated that the gene may play an important
role in the secondary metabolism of M. sativa, and its
expression pattern may be closely related to the growth and
environmental adaptability of the plant.

Index Terms—Artificial intelligence, bioinformatics,
Medicago sativa, shikimate dehydrogenase, in silico cloning

I. INTRODUCTION

Shikimate dehydrogenase (SDH) is a key enzyme in the
shikimate pathway, which plays a vital role in the synthesis of
aromatic amino acids and their precursors in plants. This
pathway is central to plant secondary metabolism, contributing
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not only to the production of amino acids such as tryptophan,
tyrosine, and phenylalanine, but also to certain plant hormones
and a vast array of secondary metabolites (Fig. 1). Beyond
metabolism, the shikimate pathway influences plant growth,
environmental adaptation, stress resistance, and yield. Its
industrial significance is also notable, particularly as shikimic
acid serves as a key precursor for the synthesis of the antiviral
drug oseltamivir (Tamiflu)!!. Genetic engineering of this
pathway offers promising avenues for enhancing the production
of valuable compounds and improving agronomic traits!!!,
Medicago sativa (alfalfa), an important forage and green
manure crop, exhibits shikimate pathway activity that is closely
linked to stress tolerance and biomass yield. Although recent
genetic studies on M. sativa have increasingly focused on
stress-related genes, functional characterization of SDH—a

pivotal enzyme in secondary metabolism — has remained

limited?!. The integration of artificial intelligence (Al) with
bioinformatics has created new opportunities for accelerating
gene discovery and functional prediction®*. Yet, current
approaches often rely on generalized bioinformatics tools that
lack custom analysis tailored to non-model species such as
alfalfa, and most conventional methods do not fully leverage Al
for predictive functional insight.

To address these limitations, this study employs a targeted in
silico cloning strategy combined with multi-level
bioinformatics analysis to identify and characterize the SDH
gene from M. sativa. We present the first report of a putative
SDH gene in alfalfa, comprising 469 bp with five open reading
frames (ORFs), among which ORF3 encodes an 85-amino acid
protein. Our analysis reveals key protein characteristics
including a molecular weight of 9370.70, an acidic isoelectric
point (pI) of 5.67, hydrophilic nature, and cytoplasmic
localization supported by the absence of signal peptides and
transmembrane domains. Furthermore, functional motif
identification and phylogenetic analysis provide insight into the
evolutionary conservation and functional role of SDH in
legumes.

These findings establish a essential genetic resource for
future research on metabolic engineering in alfalfa, and
demonstrate a bioinformatics workflow that can be augmented
with Al tools for improved gene function prediction. This work
not only facilitates further functional validation of SDH but also
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provides a foundation for enhancing stress resistance and yield
in M. sativa through molecular breeding.
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Fig. 1. The shikimate pathway. PEP: Phosphoenolpyruvate;
E4P: D-erythrose 4-phosphate; DAHP: 3-deoxy-d-arabino-
heptulosonic acid 7-phosphate; DHQ: 3-dehydroquinate; DHS:
3-dehydroshikimate; SA: Shikimate; S3P: Shikimate-

3phosphate; EPSP: 5-enolpyruvylshikimate-3-phosphate; CHA:

Chorismate; Phe: Phenylalanine; Tyr: Tyrosine; Trp:
Tryptophan.
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Fig. 2. Application of shikimic acid in plants.

II. RELATED WORK

The shikimate pathway is a fundamental metabolic route in
plants, bacteria, and fungi, serving as the crucial bridge between
primary carbon metabolism and the biosynthesis of aromatic
amino acids and a vast array of secondary metabolites. Within
this pathway, shikimate dehydrogenase (SDH, EC 1.1.1.25)
catalyzes the reversible reduction of 3-dehydroshikimate to
shikimate, utilizing NADPH as a cofactor. This reaction is a
critical control point, making SDH a subject of significant
interest in both basic research and applied biotechnology.

A.Studies on SDH Genes in Various Species

Extensive research has been conducted on SDH genes across
different kingdoms. In bacteria, such as Escherichia coli, the
aroE gene encoding SDH has been well-characterized, and its
structure-function relationship has been elucidated, providing a
foundational model for understanding enzyme kinetics and
mechanism. In plants, SDH has been identified and studied in
model species like Arabidopsis thaliana and major crops such
as rice (Oryza sativa). These studies have confirmed SDH's

pivotal role in development and stress responses. For instance,
the silencing of SDH in Arabidopsis led to severe
developmental defects, underscoring its indispensability.
Furthermore, recent work has begun to explore SDH in
bioenergy crops like Panicum  virgatum (switchgrass),
highlighting its potential in engineering pathways for improved
biomass and stress resilience. While these studies provide a
general framework for wunderstanding SDH, functional
characteristics can vary significantly between species due to
evolutionary divergence and lineage-specific adaptations.

B. Research Gap and Objective

While SDH is recognized as a critical enzyme, its specific
sequence, structure, and functional attributes in Medicago
sativa, a legume crop of immense agricultural importance,
remain poorly characterized. Previous studies in other species
provide a template but cannot directly be extrapolated. The
conventional bioinformatics approaches used in many prior
SDH studies, while useful, lack the predictive power of modern
Al techniques. Therefore, there is a clear need for a
comprehensive study that not only identifies and characterizes
the M. sativa SDH gene using established in silico methods but
also frames these findings within the modern context of Al-
driven biological discovery. This study aims to fill this gap by
conducting a foundational bioinformatic characterization of M.
sativa SDH and explicitly outlining a pathway for its future
validation and application using advanced computational
intelligence, thereby contributing to the genetic improvement
of this vital crop.

II. ANALYSIS METHODS AND TOOLS

A. In silico cloning of SDH from M. sativa

The probe amino acid sequence of the E. coli SDH used in
this study is following:

METYAVFGNPIAHSKSPFIHQQFAQQLNIEHPYGRVL
APINDFINTLNAFFSAGGKGANVTVPFKEEAFARADELT
ERAALAGAVNTLMRLEDGRLLGDNTDGVGLLSDLERL
SFIRPGLRILLIGAGGASRGVLLPLLSLDCAVTITNRTVS
RAEELAKLFAHTGSIQALSMDELEGHEFDLIINATSSGIS
GDIPAIPSSLIHPGIYCYDMFYQKGKTPFLAWCEQRGSK
RNADGLGMLVAQAAHAFLLWHGVLPDVEPVIKQLQEE
LSA.

Next, the probe sequence was searched with the M. sativa
EST database using the tBlastn tool in NCBI, and gene
sequences with a match greater than 50% were selected and
downloaded in FASTA format; contig-0 and contig-1 were
obtained by gene splicing using BioEdit "CAP conting
assembly program". Finally, the M. sativa shikimate
dehydrogenase cDNA sequence was predicted by ORF Finder
in NCBI to determine whether there was a gene with the
expected function, and finally the new gene fragment was
determined. The analysis tools are shown in Table 1.

TABLE I
TOOLS USED TO PREDICT GENE STRUCTURE

Search content Tools

Sequence acquisition ~ NCBI




https://www.ncbi.nlm.nih.gov/
BioEdit
ORFfinder

Sequence splicing

Open reading frame

identification https://www.ncbi.nlm.nih.gov/orffinder/

II1. AMINO ACID COMPOSITION ANALYSIS OF SDH IN M. SATIVA

B. Bioinformatics Analysis of the SDH in M. sativa

The obtained M. sativa SDH gene sequence was analyzed
using bioinformatics software(Sequence alignments were auto-
assembled via BioEdit CAP, with manual curation of ambiguous
regions. , and an evolutionary tree was constructed by analyzing
and predicting the physicochemical properties, hydrophilicity
and hydrophobicity, functional sites, transmembrane analysis,
signal peptides, subcellular localization, secondary structure,
tertiary structure, molecular evolution, etc. of the protein
encoded by the gene. The specific analysis content and tool
software are shown in Table 2.

TABLE II
TOOLS USED TO PREDICT PROTEIN STRUCTURE AND
FUNCTION

Amino  Number Proportion | Amino  Number Proportion
acid acid
Ala(A) 9 10.6% Ile(I) 7 8.2%
Arg(R) 3 3.5% Leu(L) 8 9.4%
Asn(N) 2 2.4% Lys(K) 3 3.5%
Asp(D) 5 5.9% Met(M) 3 3.5%
Cys(C) 3 3.5% Phe(F) 4 4.7%
GIn(Q) 3 3.5% Pro(P) 4 4.7%
Glu(E) 4 4.7% Ser(S) 7 8.2%
Gly(G) 8 9.4% Thr(T) 2 2.4%
His(H) 4 4.7% Trp(M) 2 2.4%
Val(V) 1 1.2% Tyr(Y) 3 3.5%

Search content Tools and Parameters

Base composition Bioedit (Nucleotide Composition,

Restriction Map)

Physical and
chemical properties

http://web.expasy.org/protparam/

Hydrophilicity/hydro
phobicity

http://web.expasy.org/protscale/

Functional sites https:/web.expasy.org/ prosite/

Transmembrane TMHMM2.0,Default settings (membrane

analysis probability >0.5; N-tail inside)
https://services.healthtech.dtu.dk/services
/TMHMM-2.0/

Subcellular https://wolfpsort.hgc.jp/

localization

Signal peptide https://services.healthtech.dtu.dk/service.ph

p?SignalP-5.0

SOPMAD,Window width=17; Decision
constants: Helix (=4), Sheet (=4)

Secondary structure

https://npsa-prabi.ibep.ft/cgi-
bin/npsaautomat.pl?page=npsa%?20
sopma.html

Phosphorylation site https://services.healthtech.dtu.dk/services/N

etPhos-3.1/

Tertiary structure http://swissmodel.expasy.org/repository/

MEGA11,Neighbor-Joining (NJ) tree;
Bootstrap=1000 replicates; Poisson
correction

Homologous
evolutionary tree

A. In silico cloning results of shikimate dehydrogenase from
M. sativa

The EST sequences obtained by TBLASTN were saved in
FASTA format. The sequences were spliced using Bioedit
software to finally obtain a contig with a length of 469bp. Then,
through the prediction tool ORF Finder in NCBI, the M. sativa
SDH sequence has 5 ORFs, of which the longest ORF is 258bp
long. The protein it encodes contains 86 amino acids, and the
sequence is:

MDELEGHEFDLIINATSSGISGDIPAIPSSLIHPGIYCYD
MFYQKGKTPFLAWCEQRGSKRNADGLGMLVAQAAHA
FLLWHRCSA. Sequences with high homology were found
through BLAST. Using the Bioedit tool, the base composition
can be obtained by analyzing the electronic cloning splicing
sequence, among which the proportion of adenine A is 28.14%;
the proportion of cytosine C is 27.08%; the proportion of
guanine G is 22.17%; and the proportion of thymine T is
22.60%. Analysis of restriction enzyme positions of the
electronically cloned spliced sequence revealed that the
restriction enzyme sites of the nucleotide sequence of the M.
sativa SDH include AfIIII, Alwl, Asel, and the like.

B. Analysis of the physicochemical properties of M. sativa
shikimate dehydrogenase protein

The ExPASy-Protparam tool was used to analyze the
physicochemical properties of M. sativa shikimate
dehydrogenase. The analysis showed that the number of amino
acids was 85, the molecular weight of the protein was 9370.70,
the theoretical isoelectric point pl was 5.67, the molecular
formula was Ca190He36N1120121S6, the instability coefficient was
35.85, it was a stable protein, the fat coefficient was 82.82, and
the average hydrophobicity was -0.031. Its amino acid
composition is shown in Table 3. There are 9 negatively
charged amino acids (Asp + Glu), 6 positively charged amino
acids (Arg + Lys), Ala accounts for the largest proportion,
10.6%, there is no pyrrolysine (Pyl) and selenocysteine (Sec),
and the protein is an acidic protein.

C. Prediction and analysis of hydrophilicity/hydrophobicity of
M. sativa shikimate dehydrogenase
The ExPASy-ProtScale online software was used to predict



the hydrophilicity/hydrophobicity of the amino acid protein
encoded by the M. sativa SDH gene. The results are shown in
Figure 3. Analysis of the figure shows that the larger the
negative value, the weaker the hydrophilicity of the protein;
conversely, the larger the positive value, the stronger the
hydrophobicity of the protein. The value between +2 and -3
indicates that the amino acid is amphoteric. The highest score
of the polypeptide chain is at the 69th position of the protein,
which is +1.689, and the lowest score is at the 58th and 59th
positions of the protein, which is -2.533, so it is a hydrophilic
protein. It can also be observed that the negative peak is
significantly higher than the positive peak, and it is inferred that
the M. sativa shikimate dehydrogenase is hydrophilic. This is
consistent with the analysis results of the ExPASy-Protparam
software.
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Fig. 3. The hydrophilicity/hydrophobicity prediction results of

M. sativa SDH.

D. Prediction and analysis of signal peptide and

transmembrane domain of M. sativa SDH

The signal peptide is a peptide segment consisting of 20 to
30 amino acid residues at the N-terminus of the nascent peptide
chain of a secretory protein. It determines the modification of
certain amino acid residues and is often used to guide the
transmembrane transfer of proteins. The signal peptide
structure of M. sativa SDH was predicted using the Signalp5.0
online software. The prediction results are shown in Figure 4.
The results show that the probability of the protein being a
signal peptide is 0.0015, and it can be inferred that the protein
is a non-secretory protein, and the absence of signal peptides
(SignalP5.0 score=0.0015) and transmembrane domains
(TMHMM) confirms cytosolic localization. This aligns with
SDH’s role in cytoplasmic shikimate metabolism (3] and
suggests direct interaction with cytoplasmic substrates like
shikimate.

Protein type|Signal Peptide (Sec/SPI)| Other|
Likelihood |0.0015 0.9985|
Download: PNG / EPS / Tabular

MO ELEGHEFDLIINATSSGISGOIPAIPSSLINPGIYCYDMFYQKGKTPFLAVCEQRGSKRNADGLGNLY

Fig. 4. Protein signal peptide prediction results of M. sativa
SDH.

The transmembrane domain is the main part where the
membrane-intrinsic protein binds to the membrane lipids. It is
generally composed of about 20 hydrophobic amino acids to
form an alpha helix, which is fixed to the cell membrane and
acts as an anchor. The TMHMMS-2.0 online tool was used to
predict the transmembrane domain of the protein. The results
are shown in Figure 5. At 1.0, it is the outer boundary of the cell
membrane, and O is inside the cell membrane. This study
predicted a protein sequence with a length of 85 amino acids,
but no predicted transmembrane helices (TMHs) were found,
indicating that the protein is likely to contain no transmembrane
regions, or these regions may be too short or do not meet the
prediction criteria of the TMHMM model. Overall, this protein
may be a non-transmembrane protein or located inside the cell.
Further, the protein was annotated and the functional site
prediction was performed using ExPASy-Prosite. The results
showed that the 14-17, 58-63, and 67-72 amino acids were the
predicted functional sites of the protein.
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Fig. 5. Protein transmembrane domain prediction results of M.
sativa SDH.
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E. Structural prediction and analysis of M. sativa SDH

The local spatial structure of the polypeptide main chain of
M. sativa SDH was analyzed using the online software SOPMA.
The results showed that in the secondary structure of the protein,
the largest proportion was random coils, accounting for 48.24%,
with 41; followed by a helices, accounting for 31.76%, with
27; there were 17 extended chains, accounting for 20%; there
was no B fold.



The SWISS-MODEL online homology modeling method was
used to analyze the M. sativa SDH protein, predict its tertiary
structure, and use the ball-and-stick model to display all
aromatic amino acids. The results are shown in Figure 6, A is
the predicted image of the tertiary structure of the protein, and
the blue part shown in B is the position of the aromatic amino
acids in the protein stick-and-ball model.
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Fig. 6. Protein tertiary structure and predicted position of
aromatic amino acids.

F. Construction of the phylogenetic tree of M. sativa SDH

Using the results from ORF Finder in NCBI, we obtained
homologous sequences of various species through BLAST
analysis, and then used the software MEGAI11 to analyze the
evolutionary tree structure (Figure 7). We searched for protein
sequences similar to the protein sequence and performed
multiple sequence alignment on them to construct the molecular
evolutionary phylogenetic tree of the protein in plant species
(using the neighbor-joining method, NJ).

Phylogenetic analysis indicates a clear evolutionary
relationship among the SDH genes from the bacterial species
examined. Sequences from members of the Enterobacteriaceae
family—including Escherichia coli , Shigella flexneri , Shigella
sonnei , Klebsiella pneumoniae , and Salmonella enterica —
form a tightly clustered monophyletic clade with strong
bootstrap support (values of 97 and 47), demonstrating high
sequence similarity and suggesting a relatively recent common
ancestor. In contrast, Staphylococcus agnetis (phylum
Firmicutes) represents a more distantly related lineage. Its
position as an outer group, with a bootstrap value of 54 at the
divergent node, is consistent with its taxonomic distinction
from the Enterobacteriaceae, underscoring the divergence
between these bacterial groups.

HAY8005746.1 shikimate dehydrogenase Shigella flexneri

MDDO0436966.1 shikimate dehydrogenase Shigella sonnei

EG09251376.1 shikimate dehydrogenase Escherichia coli

HBY4512961.1 shikimate dehydrogenase Klebsiella pneumoniae

ENN4193337.1 shikimate dehydrogenase Salmonella enterica subsp. enterica serovar Typhimurium

WP 107371606.1 shikimate dehydrogenase partial Staphylococcus agnetis

Fig. 7. Phylogenetic analysis of M. sativa SDH.

IV. CONCLUSION

This study focused on the SDH of M. sativa and successfully
obtained the full-length sequence of the gene using electronic
cloning technology. Through a series of bioinformatics analysis
tools and methods, the biological characteristics of the gene and
the protein it encodes were systematically analyzed!®). The
results of gene sequence analysis revealed the characteristics of
its base composition, potential restriction sites and sequence
variation information, laying the foundation for subsequent
gene function research and application. In terms of protein
sequence analysis, we deeply explored key factors including
functional sites, domains, physicochemical properties,
hydrophilic and hydrophobic properties. In addition, signal
peptide prediction, transmembrane structure analysis and
subeelltlar{oealization—analysis also provide an intuitive
understanding of the distribution and action location of the
protein in the cell. Further secondary and tertiary structure
predictions provide a spatial structural basis for revealing the
functional mechanism of the protein, while the phylogenetic
tree constructed based on multiple sequence alignment and
molecular evolution analysis reveals the evolutionary
relationship of the gene, providing important clues for inferring
its evolutionary process and genetic differences between
species.

These research results not only provide key data support for
our in-depth understanding of the SDH mechanism of M. sativa
growth and development, but also provide a theoretical basis
for the gene function and metabolic regulation of M. sativa. By
revealing the specific function of this gene in the metabolic
pathway of M. sativa, these data provide an important reference
for M. sativa variety improvement, metabolic regulation and
stress resistance research. At the same time, the gene sequence
and protein characteristic analysis obtained in this study



provide a solid theoretical basis for subsequent functional
verification experiments, and provide new ideas and directions
for further exploring the application potential of M. sativa in
agricultural production.

V. DISCUSSION

While this study utilized conventional bioinformatics tools to
successfully clone and characterize the M. sativa SDH gene, the
integration of Al in future work could profoundly deepen the
interpretation of our findings and accelerate functional
validation. The specific features of the M. sativa SDH sequence
uncovered here—such as its acidic pl (5.67), hydrophilic nature,
absence of transmembrane domains, and key functional
motifs—provide an ideal foundation for Al-driven predictive
modeling.

For instance, the amino acid sequence we identified could be
used as direct input for deep learning models like AlphaFold !
to generate a high-accuracy tertiary structure model, moving
beyond the preliminary model presented in this study. This
could reveal the spatial arrangement of catalytic residues and
suggest potential binding mechanisms for substrates or
inhibitors. Furthermore, AI algorithms could analyze our
phylogenetic results in a broader context, identifying conserved
regulatory elements across legumes that control SDH
expression under stress conditions (1! 16],

The non-secretory, cytosolic localization predicted for the
SDH protein indicates its role in intracellular metabolism. Al
models could integrate this subcellular localization data with
public transcriptomic datasets to build predictive models of
how M. sativa SDH expression correlates with drought or
pathogen challenge, thereby guiding targeted experimental
validation %, Finally, the unique sequence motifs we reported
could help train convolutional neural networks to identify SDH
genes with similar regulatory features in other crops, supporting
comparative genomics and precision breeding efforts (& 13,

In conclusion, the bioinformatic profile of M. sativa SDH
established in this work provides the essential data layer upon
which Al and machine learning can be deployed to transition
from in silico characterization to in planta functional analysis
and metabolic engineering.

While this study utilized conventional bioinformatics tools to
successfully clone and characterize the M. sativa SDH gene, the
integration of Al in future work could profoundly deepen the
interpretation of our findings and accelerate functional
validation. The specific features of the M. sativa SDH sequence
uncovered here—such as its acidic pl (5.67), hydrophilic nature,
absence of transmembrane domains, and key functional
motifs—provide an ideal foundation for Al-driven predictive
modeling.

For instance, the amino acid sequence we identified could be
used as direct input for deep learning models like AlphaFold !
to generate a high-accuracy tertiary structure model, moving
beyond the preliminary model presented in this study. This

approach has demonstrated remarkable success in predicting
protein structures with atomic-level accuracy, as exemplified
by AlphaFold’ s performance in the CASP14 competition.
Such a model could reveal the spatial arrangement of catalytic
residues and suggest potential binding mechanisms for
substrates or inhibitors, thereby facilitating targeted
mutagenesis or inhibitor design. Furthermore, Al algorithms
could analyze our phylogenetic results in a broader context,
identifying conserved regulatory elements across legumes that
control SDH expression under stress conditions ™! . For
example, random forest models could be employed to integrate
transcriptomic data from public repositories like PhytoMine,
enabling the prediction of SDH expression patterns under
drought or pathogen challenge and guiding subsequent
experimental validation 112,

Additionally, the unique sequence motifs we reported could
help train convolutional neural networks to identify SDH genes
with similar regulatory features in other crops, supporting
comparative genomics and precision breeding efforts (& 13,
Beyond expression prediction, Al-powered tools such as
DeepCRISPR % could leverage the gene sequence information
to design high-efficiency sgRNAs for CRISPR-based knockout
or editing of M. sativa SDH, thereby functionally validating its
role in stress adaptation or metabolic flux. DeepCRISPR has
already been successfully applied in animal and plant systems
to improve the efficiency and specificity of gene editing,
suggesting its strong potential for use in alfalfa.

In conclusion, the bioinformatic profile of M. sativa SDH
established in this work provides the essential data layer upon
which Al and machine learning can be deployed to transition
from in silico characterization to in planta functional analysis
and metabolic engineering.
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