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Abstract—With the development of intelligent transportati

on systems, the automatic detection of traffic signs has become
 a key task in assisted driving and unmanned driving perceptio
n systems. In view of the problem that traffic signs are small in
 scale in images and their accuracy is affected by complex envi
ronments, this paper constructs a BGC-YOLO target detection 
algorithm based on YOLOv11. First, by introducing the bidire
ctional feature fusion structure BiFPN, the interactive expressi
on of multi-scale features is enhanced. Secondly, the global-lo
cal spatial attention mechanism GLSA is combined to improve
 the model's perception of detail information and contextual se
mantics. Finally, the content-aware upsampling module CARA
FE is used to optimize the feature reconstruction process and e
ffectively retain the key information of small targets. The expe
rimental results on the CCTSDB2021 traffic sign dataset show
 that the improved model achieves a good balance between acc
uracy and efficiency, with an increase of 1.4% in mAP@0.5 co
mpared to the original model, and maintains a low computatio
nal overhead, which is practical. 
 
Index Terms—Traffic sign detection, YOLOv11, feature 
fusion, object detection 

 

I. INTRODUCTION 
Traffic signs, as the core carrier of road information, play a 

vital role in ensuring the safe driving of vehicles. They are also 
an indispensable key link in realizing autonomous driving 
technology. Due to the wide variety of traffic signs, they often 
appear in complex and changing background environments. In 
addition, the system requires real-time detection results, making 
automatic detection and recognition of traffic signs a very 
challenging task. 

Early traffic sign detection methods mainly rely on 
artificially designed features such as color and shape to achieve 
classification and recognition. For example, Bahlmann[1] 
proposed a method that uses color, shape and motion 
information for traffic sign detection; Li H[2] combined color 
segmentation and robust shape matching with a new method 
and used support vector machines for classification. Although 
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these traditional methods have achieved results to a certain 
extent, they generally rely on specific manual feature design for 
different traffic signs and are easily affected by environmental 
noise, resulting in poor robustness. To overcome these 
limitations, researchers began to introduce deep learning 
models into traffic sign detection tasks[3]. Compared with 
traditional methods, deep learning-based models have become 
the mainstream technical path in the field of traffic sign 
detection in recent years due to their higher recognition 
accuracy and stronger anti-interference ability. 

At present, the object detection methods based on deep 
learning are mainly divided into two categories: two-stage 
detection algorithms represented by the R-CNN[4] series and 
single-stage detection algorithms represented by YOLO[5]. The 
two-stage method usually generates candidate regions first and 
then performs classification and regression. Although it 
performs well in detection accuracy, it is relatively slow due to 
the complex process. In contrast, the single-stage algorithm 
omits the step of generating candidate regions, which can 
achieve faster detection speed and is suitable for real-time 
applications. However, it still has certain shortcomings in 
detection accuracy, especially in processing small objects. 

In order to further break the limitations of traditional 
convolutional architecture in modeling long-distance 
dependencies and object relationships, the DETR model was 
proposed[6], which introduced the Transformer architecture to 
build a new end-to-end object detection framework. DETR 
transforms the object detection task into a set prediction 
problem, no longer relying on candidate region generation or 
non-maximum suppression, and realizes the modeling of global 
image information through the self-attention mechanism. This 
method shows significant advantages in modeling object 
relationships and complex semantic contexts, and is particularly 
suitable for optimizing object position and category prediction 
in dense scenes. However, DETR still has shortcomings in 
convergence speed and small target detection, which has 
prompted the proposal of a series of improved variants to 
balance detection accuracy and training efficiency. 

Aiming at the problem of missed detection of small targets 
when the span of traffic signs is large, as well as the problem of 



 

false detection in complex environments, this paper takes the 
YOLOv11n model as the basic architecture from the 
perspective of improving detection accuracy and robustness, 
comprehensively considers the detection speed and deployment 
efficiency of the model, and proposes a BGC-YOLO traffic 
sign detection model. The work of this paper is as follows: 

1) In order to enhance the multi-scale feature fusion 
capability, the BiPFN feature fusion network is 
introduced. Through richer bidirectional paths and 
cross-layer connections, the feature expression 
capability of targets of different scales, especially small 
target traffic signs, is improved. 

2) The GLSA attention mechanism is introduced in the 
Neck part to enhance the information selectivity of the 
model in the feature fusion process. GLSA pays 
attention to local details and global context at the same 
time. By weighted selection of semantic features at 
different levels, it effectively improves the model's 
perception of the edge and shape details of traffic signs 
and improves the accuracy of target recognition under 
complex background interference. 

3) The lightweight and efficient CARAFE module is used 
to replace the original nearest neighbor interpolation 
method. CARAFE achieves more accurate high-
resolution feature reconstruction through content-aware 
reconstruction mechanism, effectively preserving the 
detailed information of small target traffic signs. 

II. RELATED WORKS 

A. R-CNN Series Object Detectors 
The R-CNN family has had a significant impact on the 

evolution of deep learning-based object detection frameworks. 
The original R-CNN framework was proposed by Girshick et 
al. in 2014. It proposed a two-stage detection process: using 
selective search to generate region proposals, each region is 
independently passed through a CNN to extract features, and 
then classified and bounding box regression is performed. 
Although R-CNN shows high detection accuracy, its 
computational efficiency is low due to the redundant forward 
propagation of thousands of regions, which poses a challenge 
for real-time applications. 

To overcome these limitations, Fast R-CNN[7] was born, 
which processes the entire image only once through the 
convolutional backbone network. Then, region of interest (RoI) 
pooling is used to map region proposals to feature maps, which 
significantly improves speed and reduces memory usage. Faster 
R-CNN[8] further improves on this by introducing a region 
proposal network to generate region proposals directly from 
shared convolutional features, thereby building an end-to-end 
trainable detection system with state-of-the-art accuracy and 
higher efficiency. 

Later advances, such as Mask R-CNN[9], extended Faster R-
CNN by adding parallel branches, demonstrating the 
adaptability of the R-CNN family to more complex visual tasks. 
Other variants, such as Cascade R-CNN[10], Libra R-CNN[11], 
and R-FCN[12], further optimized multi-stage training, balanced 

feature representation, and fully convolutional reasoning to 
improve detection performance (both precision and recall). 

Overall, the R-CNN family represents the foundational 
paradigm for two-stage object detection, known for its strong 
accuracy and scalability. However, computational complexity 
and inference speed remain limiting factors for real-time and 
resource-constrained applications, such as autonomous driving 
or embedded traffic sign detection systems. 

B. YOLO Series Object Detectors 
The YOLO family represents one of the most influential 

research directions in the field of real-time object detection. 
Unlike two-stage detectors such as R-CNN, the YOLO family 
adopts a single-stage end-to-end framework that can directly 
predict the object category and bounding box in the entire image 
in a single network transmission. This unified architecture 
significantly improves the inference speed, making YOLO 
particularly suitable for real-time applications such as 
autonomous driving and video surveillance. 

The first version of YOLO, YOLOv1[13], was proposed by 
Redmon et al. It defines object detection as a regression 
problem, dividing the input image into a fixed grid and 
predicting the bounding box and category probability based on 
each grid cell. Although YOLOv1 exhibits impressive speed, it 
has poor localization accuracy and has difficulty detecting 
small or clustered objects. 

To overcome these limitations, YOLOv2[14] introduced 
anchor boxes, batch normalization, and a new backbone 
network, which significantly improved accuracy without 
sacrificing speed. YOLOv3[15] further improved this 
performance by using multi-scale prediction and a deeper 
backbone network (Darknet-53), achieving a good balance 
between detection performance and inference speed for objects 
of different sizes. 

YOLOv4[16], developed by Bochkovskiy et al., strikes a 
balance between accuracy and deployability, incorporating a 
variety of modern training strategies such as cross-stage partial 
connections (CSP), Mish activation function, and CIoU loss 
function. It achieves state-of-the-art performance on the COCO 
benchmark and has good generalization ability and efficiency. 

The advent of YOLOv5[17] marked the transition of the model 
to a PyTorch-based implementation, which makes the model 
more widely adopted and easier to customize. YOLOv5 
introduced a series of lightweight models and emphasized the 
feasibility of practical deployment by focusing on speed, 
scalability, and compatibility with various platforms. 

YOLOv6[18], YOLOv7[19], and YOLOv8[20] further pushed the 
boundaries. YOLOv6 improves the neck and head design for 
industrial applications. YOLOv7 proposes an extended E-
ELAN module and auxiliary head to improve detection 
accuracy and convergence speed. YOLOv8, developed by 
Ultralytics, focuses on unified tasks (detection, segmentation, 
pose estimation), adopts anchor-free detection head and 
decoupled head design to achieve better performance on 
different data sets. 

The evolution from YOLOv9 to YOLOv13 continues to push 
lightweight object detection technology to break through the 



 

limits. YOLOv9[21] optimizes feature extraction and gradient 
flow through programmable gradient information (PGI) and 
general efficient layer aggregation network (GELAN), 
achieving millisecond-level response on edge devices; 
YOLOv10[22] eliminates NMS dependence with an end-to-end 
architecture and combines spatial channel decoupling and 
downsampling technology to achieve a new benchmark for 
real-time detection on edge devices; YOLOv11[23] introduces a 
dynamic detection head to significantly improve the ability to 
parse complex scenes while maintaining its lightweight; 
YOLOv12[24] achieves global semantic modeling with 
extremely low computational cost by relying on regional 
attention (A2) and Flash Attention mechanisms; the latest 
YOLOv13[25] breaks the constraints of traditional architecture 
with HyperACE and FullPAD, and demonstrates excellent 
energy efficiency in scenarios such as drone inspection and 
smart wearables, promoting the development of target detection 
technology towards a more edge and real-time direction. In 
summary, the YOLO family has evolved from a basic real-time 
detector to a highly optimized family of robust models that 
achieve an excellent balance between speed and accuracy. Due 
to their simplicity, scalability, and computational efficiency, 
these detectors have become the cornerstone of many object 
detection systems. 

C. DETR Series Object Detectors 
The introduction of the Transformer architecture has brought 

a new research paradigm to the field of object detection. The 
most representative work is the DETR model proposed by 
Carion. DETR first applied the Transformer encoder-decoder 
structure to the object detection task, innovatively transformed 
the detection problem into a set prediction task, and omitted the 
candidate region generation and non-maximum suppression 
(NMS) modules commonly used in traditional methods. It uses 
the self-attention mechanism to model the global features of the 
image, and has good end-to-end trainability and structural 
simplicity. However, DETR has problems such as slow 
convergence speed and insufficient detection ability for small 
targets, which limits its wide deployment in practical 
applications. 

To address these shortcomings, researchers have made many 
improvements to the DETR model and formed multiple 
variants, forming the DETR series of detectors. Among them, 
Deformable DETR[26] introduces a sparse multi-scale 
deformable attention mechanism, which enables the model to 
focus on local key positions, effectively improving the 
convergence speed and small target detection performance. 
Conditional DETR[27] uses a content-based dynamic query 
vector to enhance the model's adaptability to target semantics. 
DAB-DETR[28] introduces the idea of dynamic anchor boxes in 
the target query mechanism and improves positioning accuracy 
by iteratively optimizing the reference box position. 
Furthermore, DN-DETR[29] adopts a noise learning strategy to 
improve training stability and matching efficiency by 
introducing positive and negative sample noise. DINO[30], 
which combines the above optimization strategies, achieves a 
dual improvement in detection accuracy and training efficiency, 

and achieves excellent performance on multiple benchmark 
datasets. In addition, H-DETR[31] further enhances the local 
perception ability of the model by introducing the fusion of 
convolutional features and Transformer features, which is 
particularly suitable for dense small target scenes. 

Overall, the DETR series of methods gradually make up for 
the limitations of the original model by introducing multi-scale 
features, dynamic query and auxiliary training mechanisms 
while maintaining the simplicity of structure and global 
modeling capabilities. It has become one of the key directions 
of Transformer architecture research in the field of target 
detection, and has shown broad application prospects in tasks 
such as autonomous driving, remote sensing image analysis, 
and traffic sign detection. 

III. METHODS 

A. BGC-YOLO Overview 
In order to effectively improve the model's ability to detect 

multi-scale small targets in complex traffic environments, this 
paper proposes an improved detection model based on 
YOLOv11, BGC-YOLO. Its overall method introduces 
structural optimization and module integration to enhance 
performance from three dimensions: feature fusion, attention 
mechanism, and upsampling strategy. BGC-YOLO aims to 
solve problems such as complex background interference, 
insufficient expression of multi-scale features, and low 
accuracy in small target recognition. 

First, in the feature fusion network, BGC-YOLO uses BiPFN 
(Bidirectional Pyramid Feature Network) to replace the PANet 
structure in the original YOLOv11. BiPFN introduces a 
bidirectional feature transfer mechanism to establish a more 
sufficient information flow between high-level semantic 
features and low-level detail features, thereby enhancing the 
model's ability to detect targets of different scales, especially 
small-sized traffic signs. 

Secondly, the GLSA (Global-Local Selective Attention) 
attention mechanism is introduced in the Neck part to improve 
the model's ability to select information during feature fusion. 
Compared with the traditional attention module, GLSA 
integrates global context and local detail features, which can 
effectively highlight the key areas related to the target under 
complex backgrounds, and improve the discriminability and 
robustness of feature expression. 

In addition, the model uses the CARAFE module to replace 
the original nearest neighbor interpolation or deconvolution 
method in the upsampling stage. CARAFE adaptively 
reconstructs spatial features through the content-aware dynamic 
convolution kernel generation mechanism, effectively retains 
the image structure details, and improves the restoration quality 
of small targets in high-resolution feature maps. This not only 
improves the model's perception of fine-grained targets, but 
also alleviates the common information loss problem in the 
upsampling process to a certain extent, which helps to improve 
the overall detection performance. 

In summary, BGC-YOLO integrates three modules, BiPFN, 
GLSA and CARAFE, on the basis of the YOLOv11 framework, 



 

and significantly enhances the model's robustness in complex 
backgrounds and the detection accuracy of small targets while 
maintaining the original detection speed advantage. The 
organic integration of the three in structure enables the model 
to complement each other in multi-scale feature modeling, 
contextual information attention, and detail feature 
reconstruction, building a more efficient, lightweight and 
expressive detection framework. 

 
Fig. 1. BGC-YOLO structure 

B. BiPFN 
Although PANet can enhance the semantic transmission 

capability of features at different levels, it still suffers from 
problems such as insufficient feature flow and incomplete 
semantic fusion in small target detection scenarios. To address 
the problems of PANet in traffic sign detection tasks, such as 
low efficiency in small target feature transmission, insufficient 
fusion of upper and lower layer information, and lack of 
dynamic feature control capabilities, BiFPN[32] was used to 
replace the original PANet structure. 

 
Fig. 2. BiFPN structure 

As shown in Figure 2, BiFPN achieves bidirectional 
information flow between features at different levels by 
constructing bidirectional paths from top to bottom and from 
bottom to top, effectively enhancing the ability to integrate 
high-level semantics with low-level details. At the same time, 

the introduced learnable weighting mechanism allows the 
model to dynamically assign the importance of different feature 
layers according to task requirements, improving the flexibility 
and accuracy of feature fusion. Compared with the static fusion 
method of PANet, BiFPN has a streamlined structure and 
further improves the perception of multi-scale traffic signs, 
especially small-sized targets, significantly improving the 
detection performance in complex traffic scenarios. 

C. GLSA 
In order to further improve the model's perception of small-

target traffic signs in complex traffic scenes, this paper 
introduces the GLSA[33] module for feature preprocessing 
before the feature fusion network BiFPN. Traditional attention 
mechanisms such as SE and CBAM have performed well in 
improving model feature selectivity, but most of them focus on 
a single scale or spatial channel and lack unified modeling of 
global context and local details. GLSA can enhance the 
expressiveness of the input features before fusion, so that the 
BiFPN operation can integrate multi-scale information based on 
more discriminative features, thereby achieving an overall 
grasp of the large-scale semantic structure and full retention of 
small-scale sign details, and enhancing the model's detection 
performance in multi-scale environments. 

The GLSA module combines the advantages of local spatial 
attention (LSA) and global spatial attention (GSA). As shown 
in Figure 3, LSA focuses on the spatial detail information of the 
traffic sign area, especially has a stronger response to small 
differences such as pixel-level edges and shapes, and 
effectively improves the model's feature sensitivity to distant, 
blurred or partially occluded targets; while GSA strengthens the 
structural semantic understanding of the entire image by 
modeling the long-distance dependency between pixels in the 
image, and suppresses redundant background textures and 
external noise interference. The two work together through a 
cross-scale fusion mechanism, enhancing the global context 
modeling capability while retaining local fine information, 
significantly improving the model's ability to discriminate 
traffic signs of different sizes and semantic levels. 

Specifically, GLSA first splits the input feature map along 
the channel dimension to obtain two sub-features, which are 
input into the GSA branch and the LSA branch respectively. 
The GSA branch models long-distance pixel relationships and 
supplements the missing semantic context information in local 
features; the LSA branch focuses on local key areas, enhances 
the detail expression ability of features, and alleviates the 
problem of small target information being diluted in deep 
features. Subsequently, GLSA concatenates the outputs of the 
two branches into fused features in the channel dimension, and 
then compresses the channel through 1×1 convolution to 
generate the final output features. This processing method not 
only improves the diversity and accuracy of feature expression, 
but also avoids a significant increase in the amount of 
calculation, ensuring the adaptability of the module to real-time 
detection tasks. The calculation formula of GLSA is as follows: 
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Fig. 3. GLSA structure 

D. CARAFE 
In the task of traffic sign detection, images often contain 

complex backgrounds, dynamic interference (such as lighting 
changes, rainy and foggy weather, occlusions, etc.) and small-
scale targets. Conventional upsampling methods easily lead to 
blurred and discontinuous feature edges, which in turn causes 
the feature information of small targets to be lost during the 
upsampling process, affecting the detection accuracy. In order 
to solve the above problems, a lightweight upsampling module 
CARAFE[34] is introduced to replace the traditional upsampling 
operator to enhance the feature reconstruction capability and 
the ability to retain contextual information. 

As shown in Figure 4, the CARAFE module mainly consists 
of two parts: an upsampling kernel prediction module and a 
feature reorganization module. In the upsampling kernel 
prediction module, a small convolution kernel is first used to 
compress the input feature map to reduce the computational 
complexity; then the compressed features are processed by the 
content encoder to generate a reorganization weight matrix at 
the corresponding position, which is normalized and used as an 
adaptive upsampling convolution kernel. Then, the feature 
reorganization module uses the convolution kernel to 
reorganize the original low-resolution feature map to complete 
the generation of a high-resolution feature map. Different from 
traditional interpolation methods that upsample based on fixed 

geometric rules, CARAFE adopts a content-based dynamic 
convolution method to capture contextual information within a 
larger receptive field. It can flexibly adjust the upsampling 
strategy according to the semantic and texture characteristics of 
specific image areas, thereby effectively retaining detail 
information. 

 
Fig. 4. CARAFE structure 

CARAFE has obvious advantages in improving small target 
detection capabilities for targets such as traffic signs, which 
have small scales, fine edges, and complex shapes. Its large 
receptive field and dynamic content perception mechanism help 
to enhance the discriminability of high-resolution features and 
reduce semantic ambiguity caused by upsampling. In addition, 
CARAFE has a lightweight structural design and low 
computational overhead. It can improve overall detection 
performance without significantly increasing model complexity, 
and is suitable for traffic scenarios that require both real-time 
performance and accuracy. 

IV. EXPERIMENTS 

A. Implementation Details 
We conducted extensive experiments on the CCTSDB2021[35] 

dataset. All experiments were performed on an NVIDIA 
GeForce RTX 4090 GPU. Our network was trained for 200 
epochs using the stochastic gradient descent (SGD) optimizer 
with a momentum of 0.937, a weight decay of 0.0005, a batch 
size of 32, and an initial learning rate of 0.01. 

In order to comprehensively and objectively evaluate the 
detection performance of various algorithms in traffic scenarios, 
this experiment uses multiple indicators as performance 
evaluation criteria, including precision, recall, mean average 
precision (mAP), and floating point operations (FLOPs). In 
addition, FLOPs is used to measure the total computational 
effort of the model during forward reasoning, which is an 
important indicator for judging the computational overhead and 
complexity of the model. 

B. Ablation experiment 
In order to verify the effectiveness of the module designed in 

this paper, an ablation experiment was carried out with the 
original YOLOv11n network as the baseline. The experimental 
results are shown in Table 1. 

TABLE I 
ABLATION EXPERIMENT 

BiFPN GLSA CARAFE mAP@0.5 GFLOPs Params 
(M) 

   0.779 6.3G 2.59 
√   0.781 6.3G 1.92 
 √  0.782 8.6G 3.73 
  √ 0.782 6.6G 2.72 

√ √  0.789 6.7G 2.07 
√ √ √ 0.792 7.0G 2.19 
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From the experimental results in Table 1, it can be seen that 
after adding the BiFPN module, by constructing a bidirectional 
feature fusion path, the interaction between multi-scale 
semantic information and detail features is strengthened, and 
the perception of small target traffic signs is significantly 
improved. Without increasing the amount of calculation, the 
mAP@0.5 is increased to 0.781, and the model parameters are 
reduced from 2.59M to 1.92M, showing stronger feature 
utilization efficiency and lightweight structure. Secondly, after 
introducing the GLSA module, local attention is used to 
enhance the perception of key area details, and global attention 
is used to model contextual relationships, which significantly 
enhances the model's ability to distinguish targets under 
complex backgrounds. This module improves the detection 
accuracy to 0.782. After further integrating the CARAFE 
upsampling module into the network, the feature map is 
reconstructed through content-aware dynamic convolution 
kernels, which improves the semantic information loss problem 
caused by traditional interpolation. The mAP@0.5 also reaches 
0.782, the computational cost is 6.6 GFLOPs, and the parameter 
volume is also controlled at 2.72M, showing a good balance 
between efficiency and performance. 

When BiFPN and GLSA modules are combined at the same 
time, the detection accuracy of the model is improved to 0.789, 
which further verifies the complementary role of bidirectional 
feature fusion and attention mechanism in multi-scale object 
recognition. When BiFPN, GLSA and CARAFE are used 
together, the model mAP@0.5 is improved to 0.792, the 
calculation amount is controlled at 7.0 GFLOPs, and the 
parameter amount is 2.19M, which shows that the combination 
achieves better detection performance while maintaining low 
resource consumption, reflecting the effectiveness and 
practicality of the overall structural design. 

In order to evaluate the model more comprehensively, this 
paper introduces the precision-recall curve to make a detailed 
comparison of the models. Compared with a single indicator, 
the PR curve can fully reflect the detection trade-off 
relationship of the model under different confidence thresholds, 
and is especially suitable for analyzing the dynamic changes 
between false alarm rate and missed detection rate in small 
targets and complex background scenes. 

As shown in Figures 4 and 5, the overall distribution of the 
PR curve of BGC-YOLO is significantly better than the 
baseline YOLOv11 model. The curve is smoother and overall 
close to the upper right corner, indicating that it maintains a 

high precision and recall rate. This performance fully verifies 
the role of the module integration (BiPFN, GLSA and 
CARAFE) designed in this paper in improving the target feature 
expression and selection capabilities in complex scenes. 

 
Fig. 4. YOLOV11 PR curve 

 

 
Fig. 5. BGC-YOLO PR curve 

C. Comparative experiment 
In order to comprehensively verify the effectiveness of the 

algorithm in this paper, this section conducts a comparative 
experiment with the current mainstream traffic sign detection 
algorithm. The selected comparison algorithms include SSD, 
Faster R-CNN, YOLOv3, YOLOv5n, YOLOv7, YOLOv8 and 
YOLOv10. The comparison results are shown in Table 2. 

TABLE II 
COMPARATIVE EXPERIMENT 

Model P R mAP@0.5 GFLOPs Params(M) 
SSD 0.865 0.277 0.492 15.4G 25.0 

Faster RCNN 0.848 0.550 0.566 92.2G 41.6 
YOLOv3 0.846 0.427 0.505 5.1G 61.7 
YOLOv5n 0.864 0.694 0.775 7.1G 2.5 

YOLOv7-Tiny 0.865 0.684 0.764 13.2G 6.0 
YOLOv8n 0.879 0.706 0.782 8.1G 3.0 
YOLOv10n 0.871 0.713 0.791 6.5G 2.27 
YOLOv11n 0.866 0.708 0.779 6.3G 2.59 
YOLOv12 0.883 0.692 0.779 6.3G 2.56 
CGS-Ghost 
YOLO[36] 0.824 0.614 0.68 16.6G - 

Hyper-YOLO[37] 0.875 0.702 0.78 9.5G 3.62 
Ours 0.896 0.68 0.793 7.0G 2.19 



 

From the comparison results in Table 2, it can be seen that the 
BGC-YOLO model proposed in this paper outperforms the 
existing mainstream target detection algorithms in multiple 
performance indicators. In terms of detection accuracy, BGC-
YOLO reaches 0.793mAP@0.5, which is better than YOLOv5n, 
YOLOv8n, YOLOv10n, CGS-Ghost YOLO and Hyper-YOLO. 
At the same time, the accuracy (Precision) and recall (Recall) of 
the model are 0.896 and 0.680 respectively, and the overall 
detection performance shows stronger stability and reliability. In 
terms of model efficiency, the computational complexity of BGC-
YOLO is controlled at 7.0 GFLOPs, and the number of parameters 
is 2.19M, showing good lightweight characteristics, which is 
suitable for traffic sign detection tasks with high requirements for 
real-time performance. Compared with the classic SSD and Faster 
R-CNN, BGC-YOLO has improved its accuracy by 30.1% and 
22.7% respectively while significantly reducing the number of 
parameters and computation, demonstrating its obvious 
advantages in small target detection and adaptability to complex 
scenes. Compared with YOLOv5n, YOLOv8n and YOLOv7-
Tiny, BGC-YOLO has improved its accuracy by 1.8%, 1.1% and 
2.9% respectively while keeping the model size controllable. In 
particular, compared with the basic model YOLOv11n, although 
the computational complexity has only increased by 0.7G, the 

mAP has increased by 1.4%, showing the effective improvement 
brought by the improvement of the module structure. In summary, 
BGC-YOLO not only performs well in the mAP@0.5 indicator, 
but also maintains reasonable control in terms of model 
complexity, fully verifying its feasibility in actual traffic sign 
detection scenarios. 

D. Visualization 
In order to more intuitively demonstrate the difference in 

detection effect between the BGC-YOLO model and the 
YOLOv11 and YOLO12 models, Figure 6 gives the 
visualization results of different methods. 

As can be seen from Figure 6, compared with the lower 
performance scores of YOLOv11, YOLOv12 and Hyper-
YOLO, the BGC-YOLO model not only achieves accurate 
positioning and recognition of traffic signs, but also 
maintains a high detection accuracy. This comparison result 
confirms that BGC-YOLO has a detection advantage, and its 
positioning and recognition performance have been 
effectively improved. 

 
(a) Original image          (b) YOLOv11          (c) YOLOv12       (d) Hyper-YOLO     (e) BGC-YOLO 

Fig. 6. Visual detection effect comparison 
Figure 7 shows the heat map comparison results. It can be 

observed from the figure that in the high-resolution class 
activation area, BGC-YOLO responds more strongly to the 
target area and the brightness distribution is more 
concentrated, indicating that it is more sensitive in extracting 
target features. Especially in complex environments with 
more background interference, BGC-YOLO can more 

effectively suppress irrelevant information and improve the 
accuracy of target detection. This advantage makes BGC-
YOLO more practical in 
intelligent transportation systems, especially in tasks dealing 
with complex road scenes. 



 

E. summary 
The main innovation of this paper lies in its structural 

integration and collaborative design in the YOLOv11 
architecture. Different from the previous research that 
introduced attention mechanism or feature enhancement 
module separately, BGC-YOLO emphasizes the systematic 
optimization of functional complementarity and coupling 
strategy between modules: BiFPN is used to enhance cross-
scale semantic flow, GLSA strengthens the feature selection 
mechanism, and CARAFE improves the ability to restore 
details during upsampling. This three-in-one collaborative 
structural design helps to form a more stable detection 

performance in complex background and small target 
detection scenarios. 

 In order to verify the effectiveness of this integration 
strategy, this paper designs a series of ablation experiments 
and comparative experiments to evaluate the specific impact 
of each module on the model performance when introduced 
separately and in combination. The experimental results 
show that the complete BGC-YOLO model is superior to the 
model configuration that only introduces any one of the 
modules in multiple evaluation indicators, and shows a better 
balance between precision and recall in comparison with 
other YOLO improvement methods (such as CGS-Ghost 
YOLO) that adopt similar strategies, especially in the small 
target detection task.

 
(a) Original image          (b) YOLOv11          (c) YOLOv12       (d) Hyper-YOLO     (e) BGC-YOLO 

Fig. 7. Heatmap comparison 

V. CONCLUSION 
In order to solve the problems of small target recognition 

difficulty, easy loss of feature information and complex 
background interference in traffic sign detection, a BGC-
YOLO detection framework is proposed based on the 
YOLOv11 model. By introducing BiFPN to achieve efficient 
multi-scale feature fusion, the GLSA module is used to improve 
the model's perception of local details and global semantics, and 
the CARAFE upsampling operator is combined to enhance the 
quality of feature reconstruction, thereby significantly 
improving the detection accuracy while ensuring the 
computational efficiency of the model. Experiments have 
shown that BGC-YOLO performs better than multiple 
mainstream models, with mAP@0.5 reaching 0.793, while 
maintaining low computational complexity and parameter 
quantity, and has good real-time performance and deployment 
feasibility. In future work, we will focus on further optimizing 
the attention mechanism and feature fusion structure to enhance 
the robustness of the model in complex scenarios, including 
extreme weather conditions and occlusions. We are also 
committed to exploring lightweight model compression and 
acceleration strategies to enable real-time deployment on edge 
devices with limited computing resources. 
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