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Abstract

In the actual organization of railroad transportation, the
periodic train schedule of the railroad provides for the ar-
rival, departure or passage of the train at each station in
a fixed period, and these time points will be fixed and re-
peated in each period, so that the periodic train schedule
has a significant predictability. This fully demonstrates
the notable advantages of high-speed railways in terms of
speed and comfort, allowing passengers to conveniently
transfer at interchange stations within the railway network,
achieving a ‘public transit-like’ operation. This paper
conducts a microscopic modeling of the railway network
based on track circuit sections, and constructs a 0-1 integer
programming model for the optimization of periodic train
timetable compilation using a time-discretized extended
space-time network approach. The model is decomposed
according to the solution idea of train decomposition by
adopting a grouped sorting method, optimizing only the
optimal space-time path of one train route at a time, and
the sub-model is solved by calling commercial optimiza-
tion software. An integer linear programming model is
established using operations research optimization meth-
ods, and an efficient decomposition algorithm is designed
to solve the model, effectively improving the utilization
rate of railway line capacity and the quality of transporta-
tion services. It innovatively applies a time-discretized ex-
tended space-time network method, integrating artificial
intelligence (AI) optimization algorithms to construct a 0-
1 integer programming model for compiling periodic train
timetables.

Index Terms— AI Optimization, Two-Phase Method, Mi-
croscopic Modeling, Time-Discretized Extended Space-Time
Network

1 Introduction

Railways, as a green and economical mode of transportation,
have become an indispensable component.[1]-[4] Although
railway transportation has experienced rapid development in
recent years due to its advantages of low transportation costs
and high efficiency, and the volume of transportation has con-
tinued to increase, the rapid growth of China’s economy has
accelerated the production of various products and simultane-
ously increased the demand for goods transportation. Conse-
quently, railway transportation often faces a situation where

supply falls short of demand, significantly affecting the effi-
ciency of passengers’ normal travel and the timely delivery
of goods.[5]-[9] Therefore, under certain infrastructure condi-
tions, how to scientifically utilize transportation organization
methods to maximize the efficiency of limited railway capac-
ity has become the key to solving the problem, with related
issues of the train schedule being particularly important. High-
speed trains in Europe, Japan, and Taiwan have almost univer-
sally adopted periodic train schedules. In practical applica-
tions, the timetable for peak periods is usually compiled first,
and then adjustments are made based on fluctuations in pas-
senger flow, such as removing lines or fine-tuning some run-
ning lines to form timetables for other periods. The timetables
for weekdays and weekends or different seasons are also ad-
justed accordingly. Lines organized under the periodic train
timetable model have fully demonstrated their effectiveness
through long-term operational experience.[10]-[17] Looking
at China’s high-speed rails, most lines already have the con-
ditions to operate fully periodic train times, and the remaining
lines can adopt a mixed structure of ‘periodic + non-periodic’
train times. However, even so, as China’s high-speed railway
network gradually expands and the number of passenger trans-
ports rapidly increases, research on periodic timetable issues
in China is not comprehensive enough, and the rate of utiliza-
tion of the railway capacity needs to be improved urgently. In
the practical organization of railway transportation, the train
timetable specifies the order in which trains occupy sections,
the times at which trains depart, arrive, or pass through each
station, the running times in sections, the stopping times at sta-
tions, as well as the weight and length of the trains.[18]-[24]
The periodic railway timetable fixes the times of arrival, depar-
ture, or passing events at each station within a period, and these
event times need to be repeated in each period. Therefore, the
periodic train schedule has strong regularity, fully demonstrat-
ing the significant advantages of high-speed railways in terms
of speed and comfort. Passengers can conveniently transfer to
interchange stations within the rail network, achieving a con-
venient travel and ticketing model similar to the ’public transit’
operation.[25]-[34]

Unlike traditional macroscopic train timetables, the finely
crafted periodic train timetable falls under microscopic train
scheduling. At this micro-level, the model considers track
circuit sections as basic units and incorporates locking times
as constraints, aiming to minimize the total train travel time
across the network. Al algorithms here can predict the mi-
croscopic details of train operation, such as optimal accelera-
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tion and deceleration strategies under different signaling con-
ditions, further optimizing running times and reducing energy
consumption. Compared to headway-based running modes,
this approach, through AI’s precise control, can effectively
avoid conflicts within sections, enhancing operational safety.

2 Literature review

Recent years have witnessed a surge of interest in the prob-
lem of train timetable construction, both in China and abroad.
Numerous scholars and experts have conducted extensive re-
search on this topic. Wang proposed a periodic potential differ-
ence model based on the fundamental cycle inequalities in the
constraint graph of the CPF model, and investigated a periodic
timetable construction model and algorithm using a periodic
constraint graph. Li studied a railway scheduling model un-
der temporary speed restrictions by refining the computation
of train occupation times for block sections and incorporat-
ing speed constraints into the dispatching model. Nie gener-
ated peak-hour periodic train timetables using a breadth-first
search approach and employed a depth-first search strategy to
add non-periodic train services. Xie established a periodic
train timetable model based on the Periodic Event Schedul-
ing Problem (PESP), proposing a sequencing-based model tai-
lored to the complex operations of Chinese high-speed pas-
senger lines.NachtigallVoget addressed the periodic network
optimization problem by minimizing passenger transfer wait-
ing times and developed a genetic algorithm combining greedy
heuristics and local improvement strategies, which was vali-
dated on a railway network with 26 lines and 37 stations. Other
solution methods for periodic timetables include branch and
bound techniques used by Zimmermann-Lindner, SAT solvers
employed by Gattermann,[35]-[40] and the simplex method
adopted by Nachtigall. Currently, non-periodic timetables -
widely used in China’s conventional railway lines - are of-
ten modeled using discrete time-space networks and the big
M method, among others, which cover timetable optimiza-
tion and adjustment problems. For periodic timetables, main-
stream methods include the PESP model, the equivalent CPF
model, and discrete time-space networks. However, research
on micro-level optimization of periodic timetables remains
limited. At the micro level, models take the track circuit seg-
ments as basic units and consider locking times as constraints,
aiming to minimize the total travel time of trains across the net-
work. Compared to the headway-based running mode, this ap-
proach can effectively avoid conflicts in block sections. There-
fore, this study focuses on the detailed formulation of periodic
train timetabling grounded in micro-level railway infrastruc-
ture characteristics. A discrete space-time network is con-
structed to represent the movement of trains along identical
physical routes, which is subsequently extended through peri-
odic expansion to form an augmented discrete space-time net-
work. Based on this framework, a micro-level train scheduling
optimization model is developed with the objective of mini-
mizing the total travel time across the network. To solve the
model efficiently, a two-phase decomposition approach is em-

ployed, wherein the overall problem is partitioned by individ-
ual trains. Each resulting subproblem optimizes the space-time
trajectory of a single train line and is solved using commercial
optimization software.[41]-[44]

3 Model formulation

3.1 Periodic runtime graph modeling frame-
work based on extended spatiotemporal
network

The finely crafted periodic train timetable, distinct from the
traditional macroscopic train timetable, belongs to the micro-
scopic level of train scheduling. As illustrated in 1, in a de-
tailed periodic timetable, it is necessary to regard the station
areas and the sections between stations as individual railway
components, including nodes, switches, track circuits, and so
on. The microscopic train timetable has the following fun-
damental requirements: a track circuit can only be occupied
once at any given time, meaning only one train is allowed to
pass through; the arrival and departure tracks within a station
are used for trains to stop at the station, and trains are not per-
mitted to stop on the main tracks; the station area has station
boundaries, with boundary points serving as nodes that delin-
eate the limits between the station area and the sections.
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Figure 1: Comparison chart of traditional railways and fine
railways

A route refers to the path a train takes from one location to
another within a station. Each route, bounded by route nodes,
includes two elements: track circuits and switches, and con-
sidering safety constraints, a route can only be occupied by
one train at a time. As the starting and ending points of dif-
ferent routes vary, routes can be categorized into four types:
departure routes, reception routes, through routes, and shunt-
ing routes, with the first three collectively referred to as train
routes, as shown in 2.

In the microscopic train timetable, the concept of train route
blocking time is defined based on the railway line’s signaling,
interlocking, and block conditions. The train route is taken
as the smallest unit to set the blocking time. If the blocking
times of two train routes overlap, it indicates a potential con-
flict between these two trains. 3 illustrates the detailed compo-
sition and calculation method of the train route blocking time.
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Figure 2: Schematic diagram of train approaches in a railway
network at the micro level

Specifically, each track circuit group within the train route is
used to calculate the process of train occupation of track re-
sources, while each individual track circuit in the train route is
utilized to calculate the train’s running time within the route.
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Figure 3: Schematic diagram of the locking time of the track
section

The train route blocking time consists of three components:
reservation time, running time, and release time. The reser-
vation time includes the time required for setting up the sig-
nals and routes before the train enters the route, the driver’s
observation of the signal lights and reaction time, and the ap-
proach time from the indication signal to the entrance signal
of the train route. The running time is the period from when
the train’s front end begins to enter the route (referred to as the
train entry time) until the train’s front end reaches the end of
the route (referred to as the train exit time). The running time
is calculated by summing up the running times on the track
circuits that belong to the train route. It is assumed that the
train can change direction by directly swapping the head and
tail on the turnaround route, and thus the running time on the
turnaround route can also be calculated based on this princi-
ple. The release time is the sum of the clearance time for the
train’s length and the route unlocking time. The minimum run-
ning time of the train on a track circuit is determined based on
the length of the track circuit.

Table 1: Traction definition

Definition

1,1,75,5 Station index, 7,7, 5,5 € A
(i, Interval index, (i,7') € G

l Train scheme line index, [ € L

Symbol

k, k' Train index, k, k' € K

t, 't Discrete time unit index in the main
space-time network, ¢,t',t" € T’

i Extend discrete time unit index in spa-
tiotemporal network, 7, 7', 7"/ € T"

@11 The index of the spatiotemporal nodes
in the primary spatiotemporal network,
(i,t) eV

(i,i',t,¢')  The spatiotemporal arc index in the main

spatiotemporal network, (i,4',¢,t') € E
Extend the spatiotemporal node index in
the spatiotemporal network, (i,7) € V'
Extend the spatiotemporal arc in-
dex in the spatiotemporal network,
(i,¢',7,7") € F’

3.2 Discrete Space-Time Network Approach

To model the periodic train timetabling problem, the train op-
eration plan for the section A-B-C-D over a time span of H -T'
is represented in a discrete space-time network. In this model,
the movement and dwell of trains between stations are de-
picted as directed arrows (directed edges), as illustrated in 4
and 5, with the unit time length set to 1 minute. Here, A, B,
C and D denote station names. Intermediate stations B and C
are virtualized into two stations: B’, B and C’, C". The first
virtual station (B’ or C") represents the ‘arrival’ at the station,
while the second virtual station (B” or C"') represents ‘depar-
ture’ from the station. If a train does not stop at the station,
it directly proceeds to the second virtual station and departs
from there, as exemplified by Train 1 passing through Station
B. In contrast, if the train stops at the station, it first arrives at
the first virtual station to wait and then departs from the sec-
ond virtual station, as demonstrated by Train 1 passing through
Station C.
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Figure 4: Regular periodic train timetable



Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 2: Collection definitions

Symbol Definition
A Station collection, including virtual stations
G A collection of compartments, including virtual compartments
L Train scheme line set
K Train set
K A collection of trains belonging to train scheme line /
Vv A collection of space-time nodes in the main space-time network
\% Extend the collection of spatiotemporal nodes in a spatiotemporal network
Vi Extend the collection of spatiotemporal nodes in a spatiotemporal network
%4 A possible set of space-time nodes in an extended space-time network for train k
E A collection of space-time arcs in the main space-time network
E' Extend the collection of space-time arcs in a space-time network
Ey, The set of space-time arcs of train k in the main space-time network
E; The set of spatiotemporal arcs of train k in an extended space-time network
T A collection of discrete time units in a period, and the size of the set is the length of the period
T’ A collection of discrete time units in a primary space-time network
T Extend the collection of discrete time units in a spatiotemporal network
H Periodic transformation coefficient of T
H' Periodic transformation coefficient of 7"
H" Periodic transformation coefficient of 7"
o (j,7',7") Extend the set of spatiotemporal arcs in the spatiotemporal network that are incompatible between interval
(4,4') and time 7"
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Figure 5: Periodic train diagram in a discrete space-time net-
work

When modeling the train timetable optimization problem
using the discrete space-time network approach, let V and E
represent the sets of space-time nodes and space-time arcs in
the discrete space-time network, respectively. Additionally,
V. and E; denote the sets of space-time nodes and space-time
arcs that train k may occupy. Furthermore, if ¢,¢',t" € T are
used to index the discrete time units within the planning hori-
zon 7, then (i,t) € V and (4,7, ¢,¢') € E’ are used to index
the sets V and E, respectively. Meanwhile, the set ¢(4, 5/, ")
represents the set of space-time arcs in E that are mutually in-
compatible on section (7, j') at time ¢

Ck (iai/7tatl) T Tk (ivi/7t7t/) (D

minZ:Z Z

keEK (i,i/ t,t')EE)

kEK (3,4 ,t,t')EP(J,5',t")
(2)
o (i,4',t,¢") € {0,1}, Vk € K, (i,7,t,t') € E (3)

Equations 1 to 3 present a 0-1 integer programming model
for optimizing the macroscopic non-periodic train timetable
based on the discrete space-time network. The form of this
model, apart from the objective function, is similar to that of
the train timetable optimization model proposed by Caprara.
The objective function in Equation 1 aims to minimize the
total train operating cost, which can encompass various op-
timization objectives such as train travel time and energy con-
sumption. In this section, the cost of using a space-time arc
is set as the corresponding train’s running time on that arc,
making the objective function the minimization of total train
travel time. Constraint corresponds to the flow balance rela-
tionship, ensuring that each train selects a unique space-time
path. Specifically, Constraint uses the feasible space-time arc
set IJj, for train k, rather than the set E containing all space-
time arcs. Therefore, by defining the set of space-time arcs that
train k may traverse, the number of space-time arcs that need to
be searched can be reduced, and unnecessary space-time arcs
can be eliminated for each train k to meet dwell operation re-
quirements. Constraint is the track capacity constraint, which



Journal of Emerging Applied Artificial Intelligence (JEAAI)

Table 3: Parameter definitions

Symbol Definition

Ok The station from which train k departs

dy The final station of train k

had The safety interval between two trains departing from the same station in the same direction, and the safety

interval time parameters for the rest of the trains. Including hqq, hap, Rpp, Ppd, Ppa

Ck (Zv ilv tv tl)

The cost of using space-time arc (4,4’,t,t’) for train k

my The frequency of the train scheme line /

wy The first train with the earliest departure time is included in the train plan line

Q The number of epochs in the main space-time network, which has 7/ = @Q - T and 7" = 2Q - T for the given
parameter Q

0 The integer parameter is used to index each master plan in the expansion plan. ¥ € {0,--- ,Q}

qik An integer parameter is used to specify the order in which the train k is in the train scheme line I. ¢; €
{07... ,ml—l}

Table 4: Variable definitions
Symbol Definition

Tk (i7i/at7tl)
Lorzg(i,i',t,t') =0
Yk (iailvTv T/)
yg (4,0, 7,7") = 1L ory(i,i',7,7') =0

0-1 Main plan space-time arc selection variable, if train & select space-time arc (4,4, t,t') , x (i, t,t') =

0-1 Extend plan space-time arc selection variable, if train k select space-time arc (i,i',7,7') ,

describes the space-time resource occupancy constraints in the
railway network based on the set train safety headway times.
Specifically, only one train can occupy a space-time arc in the
set ¢(4,4’,t"). Finally, Constraint specifies the type of space-
time arc selection variables.

The set A denotes the collection of stations in a high-
speed railway network, while the set G comprises all sections
connecting pairs of adjacent stations. The periodic railway
timetabling problem involves scheduling a set of train service
lines [ € L to repeat periodically with a period length T. For
each train service line /, its operating frequency m; within the
period 7, stopping pattern, and operational range are prede-
fined. The frequency m; requires that m; identical trains be
operated within period 7, distributed uniformly at equal inter-
vals. This uniformity constraint is termed the regularity re-
quirement of periodic timetables.

Specifically, the time interval between the arrival or depar-
ture times of any two trains belonging to the same service line
at identical stations must be an integer multiple of |T/my|.
Zhang explored relaxing the regularity requirement to enhance
scheduling flexibility from the perspective of railway line ca-
pacity analysis. However, this chapter strictly enforces the
regularity requirement to facilitate subsequent modeling and
solution procedures.

Additionally, the minimum and maximum running times of
trains in sections and dwell times at stations are prescribed.
The starting and stopping additional times of trains can be in-
corporated into the minimum and maximum section running
times, provided the stopping patterns are predefined. However,
accounting for these constraints may result in significant dis-
parities in actual running times between trains traversing the
same section. To prevent overtaking of slower trains by faster

ones within a single section, this study adopts the approach of
Lie, which involves splitting train running arcs in long sections
by inserting a virtual station at the midpoint where overtaking
might occur. Consequently, the starting and stopping addi-
tional times must be integrated into the minimum and maxi-
mum running times for the first and second virtual subsections,
respectively.

In this model, block sections are treated as individual track
circuits, each consisting of two nodes numbered sequentially
from left to right (for clarity, this numbering does not follow
the conventional switch numbering rules). An example is pro-
vided in 6.
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Figure 6: Numbered refined railway lines

The periodic train timetable problem essentially involves
periodically scheduling a series of planned train space-time
paths within each period of length 7. Each path is associated
with the operating frequency, stopping patterns, and running
zones of the train. Additionally, to meet the periodic regular-
ity requirements of trains, the arrival or departure times of any
two trains with parallel paths in the space-time network must
maintain a fixed time interval. Furthermore, the running time
of trains on each track circuit (including dwell time if the train
stops) is constrained within a specific time range. Under a
given stopping pattern, trains can precisely control their accel-
eration and deceleration to manage time within the minimum
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and maximum running time limits. The railway line N is repre-
sented as a microscopic discrete space-time network graph as
follows: the vertex set V consists of individual track circuits
(or track circuit groups) in the railway network, and the di-
rected arc set C represents the running lines through each track
circuit. A railway operations department needs to schedule
train timetables for three different physical routes. Since this
study considers a microscopic-level railway network, both sta-
tions and sections can be represented by track circuits, which
are further composed of nodes. Thus, the network can repre-
sent the entire railway system, with edge nodes representing
train origin and destination nodes. Physical Route 1 is de-
picted by a blue dashed line, where the train departs from Node
1, briefly stops at track circuit (24, 25), and finally arrives at
track circuit (45, 61) via Node 45. Physical Route 2 and Phys-
ical Route 3, represented by orange and red dashed lines, re-
spectively, depart from Node 6 and Node 1, pass through the
track circuits without stopping, and ultimately arrive at track
circuit (56, 59) via Node 56, as shown in 7.
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Figure 7: A railway line with edge nodes that contains three
paths

In this model, the passage of a train through each track cir-
cuit involves three processes of the track section locking time:
reservation process, running process, and release process. 8 il-
lustrates the scenario where two consecutive trains from differ-
ent service lines pass through two track circuits. In the space-
time network, the directed arcs are connected end-to-end. Tak-
ing the black service line as an example, the two directed arcs
represent the running process time of the train passing through
track circuits, which is the time difference from when the train
head enters the starting node of the track circuit to when the
train tail leaves the ending node of the track circuit. This in-
cludes both the pure running time and the dwell time of the
train.
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Figure 8: Directed arcs in discrete space-time networks
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Figure 9: Three discrete space-time networks

3.3 Model Assumptions

To facilitate processing and comprehension, several assump-
tions are made based on the scope and nature of the problem
in this study:

1. The minimum time granularity of the space-time network
model in this project is assumed to be 15 seconds. The time
axis is divided into unit-length multiples, and a smaller mini-
mum time granularity can be applied for higher precision.

2. The railway line in this problem is double-tracked. The
model considers only trains in the down direction, assuming
no conflicts with trains in the up direction.

3. All trains are assumed to depart from the initial periph-
eral nodes of the railway network and terminate at designated
peripheral nodes.

4. Trains within the same service line are assumed to follow
identical physical paths (i.e., traverse the same track circuit
sections), with their space-time paths uniformly distributed
within the period.

3.4 Periodic Timetabling Optimization Model

9 illustrates a periodic timetable with two distinct train ser-
vice lines, both traversing Physical Path 1 on the railway line,
thereby sharing the same track circuits by default. The pe-
riod length T is 16 minutes, where Service Line 1 corresponds
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to a train frequency of 2 (i.e., two trains depart within one
period), and Service Line 2 corresponds to a frequency of 1.
Additionally, trains make stops at track circuits (24, 25), with
dwell time included in the total travel time. Within a single
period, the temporal spans of the space-time paths for all three
trains exceed the period boundary. Consequently, the origi-
nal discrete space-time network cannot display the complete
continuous service lines. Instead, portions of the space-time
paths outside the current period are mapped into the period’s
space-time network, as shown in 9(a).

Next, we transform the original discrete space-time network
into a master discrete space-time network (hereafter referred to
as the ‘master graph’) to visualize the full continuous service
lines. This is achieved by extending the timetable’s temporal
horizon to H- T, forming a master space-time network with an
expanded temporal span. Within this master network, space-
time arcs of the same path across multiple periods are concate-
nated, retaining only one complete service line, as depicted in
9(b). The parameter H is set to the smallest integer satisfying
H-T > T4z, where T4, denotes the maximum possible
travel time for any train to reach its destination. For example,
in 9(b), Tynaz= 29 minutes. Thus, H = [29/16] = 2, resulting
in a master temporal span 7”= 32 minutes.

Finally, to reflect the periodicity of train service lines and
ensure conflict-free periodic timetables, we further extend the
temporal axis of the master graph to generate an extended dis-
crete space-time network (hereafter the ‘extended graph’). As-
suming the extended period length is 7" = H' - T, where
H' > H, the extended graph replicates each service line H’
times, with each replication shifted by T units along the tempo-
ral axis. As shown in 9(c), when H'=2 and T" = 64 minutes,
the service lines from the master graph are replicated twice,
represented by dashed space-time arcs. In the extended graph,
although space-time paths may cross the right boundary of the
first period, the departure times of the first trains in all ser-
vice lines must lie within the interval [0,7). Furthermore, the
departure time window At for the first train in Service Line
1 is constrained to At C [0,7/m;), where m; is the service
frequency. According to the Lemma, subsequent trains in the
same service line are uniformly distributed with equal inter-
vals T'//m;, forming parallel directed arcs in the space-time
network. For example, the first and second trains on Path 1
depart at 1 minute and 9 minute, respectively, with an interval
of 16/2=8 minutes.

3.5 Model constraint

min /4, = Z Z

keK (i,i/,7,7")EE,

Ck (7’7 ila 7, T/)'yk (7” 7:/7 T, T/) (4)

2.

i,t:(i,i',t,t')EEml

Ty (1,4, 8, 1)

=1 ' = oy, t' = depj,
— > T, (it )= 1 i/ =dy,t' =T,
it (i it 1) E By, 0 otherwise

VieL

Yk (i,’i/,T,T/) = Tk (i,i’,t+19T,t/+19T) Vk € K,
(i7i/at7tl) EE?(i7ilvTvT/) EElaﬂG {07 7Q}57—:t+ﬁTa

(5)
=t +9T (6)
> > yi (i1, 7,7') < 1,
kEK (i,i' 7,7 )EP(4,3",7"")
V(i )eG,meT"
zy, (1,1, t,¢") € {0,1}, Vk € K, (i,i',t,t') € B (7)
yr (4,7, t,t') € {0,1}, Vk € K, (3,7, t,t') € E  (8)

In terms of mathematical representation, space-time arc se-
lection variables x(i,4',¢,t") and yx(i,i',¢,t") are designed
for the master plan and the extended plan, respectively. Specif-
ically, the time units in the master space-time network are in-
dexed by subscripts ¢ and ¢/, while the time units in the ex-
tended space-time network are indexed by subscripts 7 and
7'. Equations 4 to 8 present the periodic train timetable op-
timization model based on the extended space-time network.
In the model, the objective function 4 minimizes the total
travel time of all trains in the extended plan. Constraint is
the flow balance constraint, ensuring that the first train w;
in each train service line [ € L can find a unique space-
time path in the master space-time network. The variable
T, (4,1, ¢,¢") in constraint represents the space-time arc se-
lection variable for the first train w; in the master space-time
network. Constraint generates the space-time paths for the re-
maining trains in the same train service line [ € L, exclud-
ing the first train w;. These paths are obtained by shifting the
space-time path of the first train w; by integer multiples of the
interval min {|T/m;|,T — 1}. Additionally, the integer pa-
rameter q; i, in constraint specifies the order of train k in train
service line /, where ¢; i, belongs to the set {1,---,m; — 1},
thereby excluding the first train w; from constraint.

Another key contribution of the periodic train timetable op-
timization reconstruction model based on the extended space-
time network is the use of variable separation and replication
techniques. Constraint 6 is the consistency constraint between
the master plan and the extended plan, which replicates the
train space-time paths in the master plan Q+1 times to form
the extended plan. Specifically, the integer parameter 1J in con-
straint 6 controls the number of copies of the master plan re-
quired to form the extended plan, where ¢ belongs to the set
{0,---,@Q}. The form of constraint 6 is similar to the nonantic-
ipativity constraint in two-stage stochastic mixed-integer pro-
gramming models that link the first and second-stage deci-
sions. Crainic have demonstrated that the progressive hedging
approach can effectively handle such constraints in two-stage
stochastic mixed-integer programming models. Furthermore,
since constraint 6 in the model only performs replication op-
erations, there is no need to relax its dual into the objective
function. Constraint ?? is the track capacity constraint, ensur-
ing no train conflicts occur within the planning horizon of the
extended space-time network, thereby guaranteeing the feasi-
bility of the original periodic train timetable. Constraints 7 and
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8 define the types of space-time arc selection variables in the
master plan and the extended plan.

In addition to the aforementioned constraints, the represen-
tation of train timetables in discrete space-time networks in-
herently implies several fundamental constraints, including:
(1) Adjacent Track Circuit Arrival-Departure Temporal Con-
straint: The sequential connection of space-time arcs for the
same train service ensures temporal continuity between adja-
cent track circuits. Specifically, the departure time from the
preceding track circuit equals the arrival time at the subsequent
track circuit.

(2) Space-Time Network and Physical Path Correspondence
Constraint: The existence of a directed space-time arc in the
discrete network explicitly indicates that the train selects track
circuit (i, j) along its route from the origin to the destination
node in the railway network, while the absence of such an arc
implies non-selection.

(3) Running and Dwell Time Constraint: The traversal of track
circuit (i, j) inherently incorporates both running time and
dwell time. By default, the total time expenditure on the di-
rected arc equals the temporal difference between the arrival
time at the subsequent track circuit and the arrival time at the
current track circuit. Consequently, these constraints are not
explicitly formulated in the model construction.

4 Solution algorithm

4.1 Grouping by Path Similarity

The optimization of detailed operational timetable compilation
requires modeling the railway network at a micro level. Al-
though this approach allows for more efficient utilization of
track conditions, it also significantly increases the complexity
of the problem. To address this issue, reduce the complex-
ity, and accelerate the algorithmic solution process, this paper
proposes to establish methods for grouping trains.

Herrigel, while grouping passenger trains of the Swiss rail-
way to solve the PESP model, proposed the geographical
grouping (Geo) method based on the practical scheduling re-
quirement of assigning railway staff to different regions to or-
ganize trains. Drawing on this idea, in the microscopic-level
railway network, since the nodes included in the physical paths
of different trains are not identical, we can group trains based
on the similarity of the node sets they pass through. Clus-
ter analysis, also known as classification analysis, is a statis-
tical method that divides original objects into multiple rela-
tively homogeneous groups, with the classes unknown prior to
the analysis. Clustering partitions samples into several groups
based on their distances or similarities, aiming to minimize
intra-group distances while maximizing inter-group distances.
Among clustering algorithms, K-Means is one of the most
widely used. Since the input data is unlabeled, it belongs to
unsupervised learning.

Nliﬂlj

Sil)=1— ——"b
( J) (Nll +NlJ)/2

Vel )

Where the similarity distance S € [0,1]"*", L is a collec-

tion of all train routes, N;,, IV;, are the number of nodes that
path [;, [; passed.

Setting k=m involves dividing all trains into mm groups. A
heuristic algorithm is designed to cluster and group the train
paths, with the principle that the resulting groups should have
approximately equal numbers of elements, and the elements
within each group should minimize the total similarity with
other elements in the same group. In other words, the most
similar paths are assigned to the same group based on the sim-
ilarity measure. The flowchart of the algorithm is shown in 10.
The steps of this heuristic algorithm are as follows:
Definitions:

- Sample Set: L = {l1,l2,...,0,}

- Cluster Groups: K = {K1, Ks,..., K}
Procedure:
1.Initialization:

All cluster groups K (j = 1,2,...,m) are initialized as
empty sets.

2. Seed Selection:

- Select two elements [,,l, € L with the maximum pair-
wise dissimilarity (i.e., argmax;, ; d (I;,1;) ,where d denotes
the distance metric).

- Assign [, and [, as initial centroids to distinct clusters K
and K> .

- Iteratively select the remaining m — 2 elements from L to
maximize the minimum inter-cluster dissimilarity,ensuring the
sum of pairs similarities .S is minimized.

Formally:
Selectl, € L\ {K1 U Ky} suchthat . S (Ix,l;)is min-
LieK;
imized for all 5 .

Assign these elements to new clusters K3, . .
3. Balanced Assignment:

- While L # @ :

a. Identify the cluster K,;,, with the smallest cardinality.

b.  Select an element [ € L that minimizes the
intra-cluster similarity when added to Ky, : ¥ =
argminic;, >, S(,1).

1;€ Kmin
c. Assign [* to K i, and remove [* from L .

Ko

4.2 Sorting by Occupation Time

Since different groups occupy the railway line for varying total
durations, prioritizing the solution of groups with longer occu-
pation times can be beneficial. This is because their longer
spans reduce the scale of the directed arc options in the space-
time network for subsequent groups, thereby narrowing the
search range during computational solving and accelerating
the solution process.

The occupation time of a train group is the sum of the oc-
cupation times of all trains within the group, where the occu-
pation time of a single train is the total time it occupies all
track circuit sections it passes through, including both running
and dwell times. Although the occupation times of different
trains may overlap temporally, since the timetable is not yet
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Figure 10: Flow diagram of path similarity grouping algorithm
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Figure 11: Flow diagram of the grouped iterative solution al-
gorithm

determined when using this sorting method, the sum of occu-
pation times is used as the sorting criterion. The formula for
calculating the occupation time of a train group is as follows:

+ tdw)

Where the length of the track circuit segment Ly , the max-
imum allowable speed at which a train can pass through a sec-
tion of the track circuit is v/ | the train stop times is #4,,, the
velocity coefficient is a.

f— Z Z Liink (10)

( link
[N
a€A; link€path, m

The flowchart of the algorithm is shown in 11. After com-
pleting the train grouping and sorting, it is essential to design
a method for iteratively incorporating the grouped trains into
the model for solving. After each target group optimization,
the determined arcs are added to the ‘Marked 1’ list. During
the next optimization, the arcs from the latest ‘Marked 1° list,
along with all arcs of the group to be optimized, are treated
as the target optimization arcs. Constraints are added to the
model to ensure that all arcs in the ‘Marked 1 list are fixed to
1. After optimization, this list is updated accordingly.
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5 Case study

This chapter adopts the network data from the 2016 RAS Prob-
lem Solving Competition (Railway Application Section of the
Institute for Operations Research and the Management Sci-
ences (INFORMY)) titled ‘Train Scheduling in Railway Net-
works: Integrated Optimization of Timetabling and Mainte-
nance Task Allocation’. By configuring rational parameters
and leveraging the mathematical models established earlier,
this study solves the network to generate a refined periodic
railway timetable for practical operations. The grouping algo-
rithm, model-solving procedures, and timetable generation in
this work are implemented using Python 3.7.12.

5.1 Case description and parameter configura-
tion

The railway network provided in the 2016 RAS competition
comprises 27 stations, 55 track segments, 261 routes, 1,027
track circuit section groups, 1,811 track circuit sections, and
1,619 nodes. The network is partitioned into five geographi-
cal divisions: Western, Eastern, Northern, Southern, and M-
Station. The M-Station area represents the most complex hub,
consisting of 19 siding tracks and 4 main tracks, intercon-
nected with all four regional divisions. Consequently, most
trains in the network traverse M-Station. The network also
includes maintenance track circuit section groups, located in
stations or track segments.

w1

17 s

1819
4 2

“

Figure 12: Two-track rail route map of the western region

Due to the excessively large number of track circuit sections
in the entire railway network, the generated detailed timetable
is inconvenient to display. This example extracts the western
region of the network, focusing on three stations as the tar-
get line instance. To reduce the number of track circuit sec-
tions along the line, we combine several track circuit sections,
as shown in 12. This regional line is a double-track railway
comprising 43 nodes, 48 track circuit sections, and 3 stations
(W1-W3). Since the model does not consider conflicts be-
tween trains in different directions, only the track circuit sec-
tions that may be passed by trains traveling in the downward
direction from W3 to W1 are retained, totaling 14 sections.
Additionally, as the mathematical model focuses solely on op-
timizing the train timetable, the original maintenance sections
are not considered in this project.

The input data files include information on nodes, track cir-
cuit sections, track circuit section groups, and train details,
with their specific meanings described in 5.

5.2 Parameter configuration

(1) Fixed Parameters

10

Following the methodology of Meng for setting occupation
and release intervals of railway resources, the reservation time
for track circuit sections is set to 60 seconds, meaning a track
circuit section is occupied one minute before a train arrives.
Similarly, the release time is set to 60 seconds, indicating the
track circuit section remains occupied for one minute after the
train departs.

In this case study, to avoid excessive computational com-
plexity from a large number of space-time arcs, the dwell time
at stations is fixed at 120 seconds, representing the minimum
allowable dwell time. Additionally, the minimum traversal
time for a train to pass a track circuit section is calculated
based on the section length, maximum permitted speed, and
train speed coefficient. The maximum traversal time is de-
fined as 120% of the minimum traversal time, forming a can-
didate set of travel times for each train across track circuit sec-
tions. This approach effectively reduces the number of space-
time arcs to be solved, particularly in networks with long or
densely segmented tracks. The base period length of the peri-
odic timetable is set to 2 hours (7200 seconds). Notably, the
minimum time granularity is defined as 10 seconds, requiring
all time-related variables in the case study to be converted into
unit-scale quantities (e.g., the period duration is represented
as 720 units). Finally, the master plan space-time network is
extended to generate an extended plan space-time network, re-
flecting the regularity of train service lines. A minimum scal-
ing factor of 2 is applied, fixing the extended period length as
twice the master plan period length.

(2) Variable Parameters

After defining all fixed parameters, the period scaling factor
(from the base plan to the master plan) is adjusted to finalize
the periodic timetable configuration. The master plan period
length is determined by ensuring that the latest arrival time of
any service line (with its first train departing within the initial
period) does not exceed the master plan period length.

The case study involves 8 trains, which can be grouped into
2, 3, or 4 clusters. The grouping principle prioritizes minimiz-
ing total computational time while ensuring that no single clus-
ter contains an excessive number of trains, which would negate
the purpose of the proposed grouping optimization framework.

5.3 Validation of train grouping methodology

To visually compare the performance of direct optimization
versus group-based optimization, we designed two train path
scales: a small-scale group (hereafter ‘Group 1’) with an av-
erage path length of 5 track circuit sections per train, and a
large-scale group (hereafter ‘Group 2’) with an average path
length of 10 track circuit sections per train. The selected track
circuit regions for these groups are highlighted by the blue and
red boxes in 13. Notably, each additional track circuit section
doubles the number of space-time arcs generated per train. For
example, a single train in Group 2 generates 31 times more
space-time arcs than one in Group 1. For 6 trains, this differ-
ence escalates to 186 times.

The total number of trains in both groups was varied dynam-
ically from 2 to 6. Using identical hardware, direct optimiza-
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Table 5: The road network data for the case

Filename Attribute Meaning
Input_Node node_id Node number
link id Track circuit number
from_node Track circuit start node
Tnput Link tom.ode . Track ci.rcui.t en.d node .
length_in_mile Track Circuit Line Length (miles)
speed_limit_in_mph_FT Pass the maximum speed limit (downlink)
dwelling_allowable_flag Whether trains are allowed to stop
Input_Cell cell_id The track circuit group number
including_link Included track circuits
train_id The train number

origin_node_id

The starting point of the train

destination_node_id

End of the train

Input_Train_Info speed_multiplier

Velocity coefficient

frequency

The frequency of the train during the original period

link_of_ actual_path

The track circuit through which the physical path of the train
passes in turn

dwelling_link

Trains need to stop at the track circuit in turn
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Figure 13: Track circuit section in the experimental area

tion and group-based optimization were applied to each ex-
perimental group. For group-based optimization, trains were
randomly grouped, with a maximum of 2 trains per group to
ensure computational tractability. The total computation times
for model optimization in both experimental groups are com-
pared in 14 and 15.

Key findings from the experiments include:
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Figure 14: The first group of experiments computation time

1. Group-based optimization consistently reduced compu-
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Figure 15: The second group of experiments computation time

tation time compared to direct optimization, regardless of path
scale.

2. As the total number of trains increased, computation time
rose for both methods. However, the advantage of group-based
optimization became more pronounced with larger fleets. For
6 trains, direct optimization exhibited significantly longer
computation times, with the gap widening progressively.

3. For the same total number of trains, longer train paths
(Group 2) amplified the time saving benefits of group-based
optimization

4. Objective function values from both methods were nearly
identical, confirming that group-based optimization preserves
solution quality.

In summary, the results demonstrate that group-based op-
timization significantly reduces computation time for larger
fleets, highlighting its practical superiority. Furthermore, the
method exhibits even greater advantages when applied to
large-scale networks with numerous track circuit sections and
high train volumes.

11
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5.4 Experimental design and results

To evaluate the effectiveness of different train grouping meth-
ods and group sequencing strategies, we conducted compara-
tive experiments. The experimental case uses the track circuit
sections within the blue-boxed region of 13, with a total of 12
trains.

(1) Comparison of Train Grouping Methods

Three grouping strategies were tested:

1. Random Grouping: Trains are randomly assigned to
groups, with a maximum of 3 trains per group.

2. Path Similarity-Based Grouping: Trains sharing over-
lapping track circuit sections or similar physical paths are
grouped together.

3. Departure-Time Clustering-Based Grouping: Trains are
clustered using the K-means algorithm based on their sched-
uled departure times.

A total of 12 trains (representing 12 distinct service lines)
were divided into 2 to 6 groups under three grouping strate-
gies: route similarity-based grouping, frequency-based group-
ing, and random grouping. To control for extraneous variables,
the sequencing of train groups was uniformly randomized
across all configurations. Each configuration underwent three
repeated trials, resulting in 45 total experiments. The objective
function value remained consistent at 44,490 s in all trials. The
averaged computation times are summarized in 6 and visual-
ized in 16. The final result reveals that the route similarity-
based grouping significantly outperformed both frequency-
based grouping and random grouping in terms of average com-
putation time, while the latter two methods exhibited com-
parable performance. All grouping methods preserved solu-
tion quality, without impacting the objective function value.
Across all grouping strategies, average computation time in-
creased proportionally with the number of groups, highlight-
ing a trade-off between granularity and computational effi-
ciency.

(2) Comparison of Train Group Sequencing Methods

Average computation time (s)

265

260
Group by travel frequency

6
5
4

Randomization

Number of groups (groups)

2
Grouping methods Group by path similarity

Figure 16: Chart of the results of the grouping method control
experiment

The train grouping method of controlling irrelevant vari-
ables is divided into 6 groups by the method of route similar-
ity. After the grouping is completed, the trainsets are sorted by
random sorting and the total occupancy time. The total occu-
pancy time of each group was calculated according to equation

12

10, and the experiment was repeated 3 times, and the sorting
results and average calculation time are shown in 7.

The results show that the average calculation time is nearly
1.233% compared with random sorting, and it does not affect
the objective function value, which proves that sorting by oc-
cupancy time from large to small can improve the computa-
tional efficiency of the model to a certain extent.

5.5 Solution of the practical case

In the example, the total length of the line is approximately 65
km. To simplify the calculation, only trains traveling in the
downward direction are considered. As shown in 17, based on
whether the trains stop at intermediate stations, there are two
train operation paths (via nodes):

(1) With stops: 3 -5—-6—-7—-8—-9—>11 - 12—
13—-14—15—16 > 17

(2) Without stops: 3 -5 —-6—>7—>8—=>9— 10— 12
—13—>14—>15—-16— 17

mw1
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Figure 17: Actual train route map

The trains operate at a maximum speed of 180 km/h and are
categorized into four types based on their stopping patterns at
intermediate stations and line-specific conditions:

1. Type I: Non-stop at intermediate station W2 with a speed
coefficient of 1;

2. Type II: Non-stop at intermediate station W2 with a speed
coefficient of 0.7;

3. Type II: Stops at intermediate station W2 with a speed
coefficient of 1;

4. Type IV: Stops at intermediate station W2 with a speed
coefficient of 0.7.

Key operational characteristics of these train types, includ-
ing acceleration/deceleration profiles, dwell times, and energy
consumption metrics, are summarized in 8. According to the
path similarity grouping method, combined with the train op-
erating frequency, all trains are divided into 4 groups. The
train grouping and solving order are shown in 9. 10 shows the
detailed timetable for each train that generates the first train
entering the track circuit.

Using Python’s Matplotlib library, a microscopic-level peri-
odic timetable was generated, as illustrated in 18. Finally, fol-
lowing the methodology of Andrea for generating train block
time diagrams, we constructed periodic timetables by filling
closed rectangular blocks (aligned with diagonal space-time
arcs) with track circuit traversal times or track circuit blocking
times. The resulting diagrams are shown in 19 and 20, respec-
tively.
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Table 6: Comparison table of experimental results of grouping methods

Method

, Path similarity Travel frequency Randomization Average
Groups’number
2 264.493 270.158 265.852 266.834
3 269.686 272.753 272.336 271.592
4 276.930 275.772 274.185 275.629
5 277.488 281.824 286.893 282.068
6 280.373 284.768 293.256 286.132
Average 273.794 277.055 278.504 -
Table 7: Experiment of trainset sequencing method
1,6 27,12 (3)2,8 (43,9 (5)4,10 (6)5,11 Average calculation time
Sort randomly 3 2 5 6 4 1 280.373
Occupy time sorting 4 3 1 6 2 5 276.917
g o ERCT S ey M
S e Tl

Time (min)

Figure 18: Periodic train timetable
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Figure 19: Periodic train timetable (Track circuit section run-
ning time)
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Figure 20: Periodic train timetable (Track circuit section lock-
ing time)

6 Conclusion

At the microscopic level, railway stations and track sections
are modeled with train movements represented through track
circuit units along physical paths. Train occupation of these
track circuits is regulated based on locking times to ensure
safe operation. By representing time on the horizontal axis
and traversed track circuits on the vertical axis, a sequence of
space-time network diagrams is constructed: the original, the
main, and the extended space-time networks. The mathemati-
cal model is formulated using the arcs of the extended space-
time network, aiming to minimize total travel time subject to
constraints including flow conservation, periodicity coupling,
track circuit occupancy, and binary decision variables. Due
to its combinatorial nature, the resulting integer programming
model is NP-hard. To alleviate computational complexity and
enhance solution efficiency, this study proposes various train
grouping strategies and ordering heuristics, alongside a train-
group iterative solution algorithm. The model is implemented
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Table 8: Train information

The train ~ Velocity Frequency Pass through Stop track circuit
number coefficient the track circuit section section
1 1 2 1;2;3;4,5,6;8;10;11;12;13;14
2 1 1 1;2;3:4;5;7;9;10;11;12;13;14 7
3 0.7 2 1;2;3:4;5;7;9;10;11;12;13;14 7
4 0.7 1 1;2;3:4:5;6;8;10;11;12;13;14
5 1 2 1;2:3:4:5;7;9;10;11;12;13;14 7
6 1 1 1;2;3;4,5,6;8;10;11;12;13;14
7 1 1 1;2;3;4;5;6;8;10;11;12;13;14
8 0.7 1 1;2;3:4;5;7;9;10;11;12;13;14 7
Table 9: Train group information driver reaction time, and approach time to the entry signal),
running time (from the train’s front end entering to its front
Group The number of Solve end exiting the path, calculated by summing running times on
number _the train in the group _order track circuits), and release time (clearance time for train length
1 1.6 3 plus route unlocking time). An Al system can dynamically
2 2.8 2 adjust these parameters to adapt to varying operational condi-
i i; i tions, such as adverse weather or equipment failures, thereby

in Python with IBM ILOG CPLEX as the solver.

Model validation employs real-world data from the 2016
RAS problem-solving competition. Eight trains are partitioned
into four groups using a path similarity clustering method,
which are then optimized sequentially based on descending
total occupation times. The grouped approach reduces compu-
tation time to 2710.894 seconds, yielding a 28.49% efficiency
gain compared to ungrouped solving. Within a 2-hour schedul-
ing horizon, the total travel time for down-direction trains
reaches 18860 seconds (5.24 hours), demonstrating effective
utilization of line capacity and improved timetable quality.

The optimization of train timetables at such a fine-grained
microscopic level not only enhances operational efficiency
but also directly benefits daily life by improving punctuality
and reliability of rail services. This leads to reduced passen-
ger waiting times, smoother transfers, and increased capacity
to accommodate growing travel demand. Consequently, the
proposed approach contributes to more sustainable and user-
friendly public transportation systems, promoting economic
development and enhancing the overall quality of urban mo-
bility.

Virtual Stations and Intelligent Decision-Making: Interme-
diate stations are virtualized into two stations—one for “ar-
rival” and one for “departure.” An Al system can intelligently
decide on train stop or through-running strategies at these vir-
tual stations based on real-time passenger flow, line conditions,
and train priorities.

Train Paths and Predictive Analytics: Train paths include
track circuits and switches. For safety, only one train can oc-
cupy a path at any given time. Al models can analyze historical
data to predict potential conflict points for different trains on
specific paths and perform proactive scheduling optimization.

Train Path Blocking Time and Intelligent Optimization:
This includes reservation time (for signal and route setting,

achieving more flexible and efficient scheduling.
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