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Abstract—This research propose a hybrid causal-predictive 

framework for data asset valuation and regulatory-integrated 
financial reporting in manufacturing enterprises, addressing 
the dual challenge of quantifying intangible data value while 
ensuring compliance with evolving financial standards. The 
system integrates partial least squares structural equation 
modeling (PLS-SEM) to establish causal relationships 
between latent data asset constructs and observed financial 
performance metrics, robustly capturing non-linear 
interactions typical in manufacturing datasets. A hierarchical 
transformer architecture concurrently processes regulatory 
texts, dynamically scoring compliance urgency through 
temporal and semantic attention mechanisms, which we 
formalize as a Regulatory Pressure Index (RPI). These 
components are unified in a multi-objective decision curve 
analysis that balances valuation insights against regulatory 
risks, visualized through an interactive efficient frontier 
dashboard. The proposed method advances conventional 
valuation approaches by simultaneously resolving the 
epistemic uncertainty of data asset valuation and the temporal 
volatility of reporting requirements. Experimental integration 
with existing ERP pipelines demonstrates practical feasibility, 
as the system automatically generates XBRL-tagged 
disclosures while maintaining interoperability with legacy 
financial reporting tools. Our framework contributes to both 
academic research and industrial practice by providing a 
theoretically grounded yet operationally adaptable solution for 
data-driven financial decision-making under regulatory 
uncertainty. The results suggest significant improvements in 
valuation accuracy and compliance responsiveness compared 
to static valuation models, particularly for manufacturing 
firms with complex data ecosystems. 
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(Regtech), Partial Least Squares Structural Equation Modeling 
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I. INTRODUCTION 
The valuation and financial reporting of data assets have 
emerged as critical challenges for manufacturing listed 
companies in the digital economy. While data assets 
increasingly constitute strategic resources that drive 
competitive advantage, their inclusion in financial statements 
remains problematic due to measurement uncertainties and 
evolving regulatory landscapes. Traditional accounting 
frameworks struggle to capture the value creation mechanisms 
of data assets, which exhibit network effects and non-linear 
relationships with firm performance [1]. This gap becomes 
particularly acute for manufacturing firms, where operational 
data from IoT systems, supply chain analytics, and product 
lifecycle management platforms create complex valuation 
scenarios that transcend conventional asset classification 
boundaries [2]. 

Current approaches to data asset valuation face three 
fundamental limitations. First, existing methods often treat 
data characteristics in isolation, failing to account for their 
interdependent effects on financial outcomes. While partial 
least squares structural equation modeling (PLS-SEM) has 
shown promise in modeling such complex relationships [3], 
these applications have not been systematically adapted to the 
manufacturing context where data quality metrics interact with 
production variables in non-intuitive ways [4]. Second, 
regulatory compliance is typically addressed as a post-hoc 
constraint rather than an integrated dimension of valuation. 
The dynamic nature of financial reporting standards, 
particularly for listed companies, requires continuous 
monitoring of SEC filings and accounting pronouncements [5], 
yet current systems lack mechanisms to translate regulatory 
changes into real-time valuation adjustments. Third, decision-
making frameworks rarely quantify the trade-offs between 
potential valuation gains and compliance risks, leaving 
financial managers without robust tools to assess whether data 
asset capitalization creates net benefit [6]. 

We address these limitations through a hybrid 
methodology that combines causal-predictive modeling with 
real-time regulatory analysis. The proposed system establishes 
several theoretical and practical advancements over existing 
approaches. Theoretically, we extend PLS-SEM to incorporate 
manufacturing-specific data characteristics such as equipment 
interoperability scores and production line integration levels, 
capturing how these latent constructs influence traditional 
financial metrics through moderated mediation paths. 



 

Practically, we develop a natural language processing pipeline 
that automatically parses regulatory documents to identify 
reporting requirement changes, scoring their potential impact 
using a novel Regulatory Pressure Index derived from 
semantic similarity measures and temporal decay functions [7]. 
These components feed into a dynamic dashboard that 
visualizes the efficient frontier between data asset valuation 
and compliance risk, enabling proactive adjustments to 
financial reporting strategies [8]. 

Our framework makes three primary contributions. First, 
we demonstrate how manufacturing firms can operationalize 
data asset valuation by mapping causal pathways between 
technical data attributes and financial statement line items, 
addressing the epistemic uncertainty that currently hinders 
recognition. Second, we show that real-time regulatory 
analysis significantly improves the timeliness and accuracy of 
data asset reporting, particularly for listed companies facing 
frequent standard updates. Third, we provide empirical 
evidence that decision curve analysis offers superior net 
benefit compared to conventional valuation approaches when 
compliance risks are incorporated as opportunity costs. 

The remainder of this paper is organized as follows: 
Section 2 reviews related work in data asset valuation and 
regulatory compliance systems. Section 3 establishes the 
theoretical foundations and technical preliminaries. Section 4 
details our hybrid methodology, while Section 5 presents 
experimental results from manufacturing firm case studies. 
We discuss implications and future research directions in 
Section 6 before concluding in Section 7. 

II. LITERATURE REVIEW 
The valuation and financial reporting of data assets intersect 

multiple research domains, including intangible asset 
accounting, predictive analytics for regulatory compliance, 
and decision support systems for financial management. 
Existing approaches can be broadly categorized into three 
streams: valuation methodologies, regulatory compliance 
frameworks, and integrated decision-making systems. 

A. Data Asset Valuation Methodologies 
Prior research has explored various quantitative approaches 

to measure the economic value of data assets. Traditional 
accounting frameworks often rely on cost or market-based 
valuation methods [1], which prove inadequate for data assets 
due to their non-rivalrous nature and context-dependent utility. 
More sophisticated techniques employ predictive modeling to 
establish relationships between data characteristics and 
financial outcomes. The partial least squares structural 
equation modeling (PLS-SEM) approach has gained traction 
for analyzing complex causal relationships between latent 
constructs [3], particularly when dealing with non-normal 
distributions common in manufacturing data. Recent 
extensions incorporate entropy-based quality metrics [4] to 
better capture the information density of industrial datasets. 
However, these methods typically treat data attributes as 
independent variables rather than interconnected components 
of an enterprise data ecosystem. 

B. Regulatory Compliance and Financial Reporting 
The dynamic nature of financial reporting standards 

necessitates continuous monitoring of regulatory changes. 
Natural language processing techniques have been applied to 
analyze SEC filings and accounting pronouncements [5], 
though existing systems primarily focus on document 
classification rather than impact assessment. Transformer-
based architectures have shown promise in extracting 
obligation vectors from regulatory texts [7], yet their 
application to real-time compliance scoring remains 
underexplored. The financial sector has pioneered predictive 
analytics for regulatory compliance [9], but manufacturing 
firms face unique challenges due to the operational nature of 
their data assets and the lack of standardized reporting 
frameworks for industrial data. 

C. Integrated Decision Support Systems 
Decision curve analysis has emerged as a robust framework 

for evaluating predictive models in clinical settings [6], with 
recent adaptations to financial contexts. These methods 
quantify the net benefit of alternative strategies by 
incorporating opportunity costs and risk preferences. 
Interactive dashboards have been developed to visualize trade-
offs between competing objectives [8], though existing 
implementations rarely integrate real-time regulatory inputs 
with predictive valuation models. The manufacturing sector 
has adopted performance measurement systems based on 
financial statements [10], but these typically focus on tangible 
assets rather than data-driven value creation. 

The proposed framework advances beyond these existing 
approaches by simultaneously addressing three critical gaps. 
First, our PLS-SEM implementation captures manufacturing-
specific data interactions through moderated mediation 
analysis, extending conventional causal modeling. Second, the 
regulatory foresight module introduces temporal decay factors 
and company-specific context embeddings to transform static 
compliance checks into dynamic risk assessments. Third, the 
decision integration system operationalizes theoretical 
concepts from decision curve analysis by incorporating real-
time regulatory pressure indices into the net benefit 
calculation. This holistic approach enables manufacturing 
firms to navigate the dual challenges of data asset valuation 
and financial reporting compliance with unprecedented 
precision. 

III. BACKGROUND AND PRELIMINARIES 
To establish the foundation for our hybrid methodology, we 

first examine the key concepts and challenges surrounding 
financial reporting standards and data asset valuation. This 
section provides the necessary theoretical grounding while 
highlighting the specific pain points that motivate our 
integrated approach. 

A. Financial Reporting and Regulatory Compliance 
Modern financial reporting operates within a complex 

ecosystem of accounting standards and regulatory 
requirements. The International Financial Reporting Standards 



 

(IFRS) and Generally Accepted Accounting Principles (GAAP) 
provide frameworks for asset recognition and measurement, 
yet neither fully addresses the unique characteristics of data 
assets [11]. Compliance risk emerges from the interaction 
between evolving regulations and company-specific reporting 
practices, which we formalize as: 
𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒	𝑅𝑖𝑠𝑘
= 𝑓(𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦	𝐶ℎ𝑎𝑛𝑔𝑒, 	𝐶𝑜𝑚𝑝𝑎𝑛𝑦	𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠)																	(1) 

Three primary challenges complicate regulatory adherence 
for manufacturing firms. First, the rapid pace of technological 
advancement often outpaces standard-setting processes, 
creating ambiguity about appropriate valuation methodologies. 
Second, jurisdictional differences in reporting requirements 
introduce additional complexity for multinational 
manufacturers [12]. Third, the operational nature of 
manufacturing data—spanning supply chain, production, and 
product performance metrics—does not neatly align with 
traditional asset classification categories. Non-compliance 
consequences range from financial penalties to reputational 
damage, with particular severity for publicly listed companies 
subject to securities regulations [13]. 

B. Data Asset Valuation Challenges 
Quantifying the economic value of data assets presents 

unique methodological hurdles compared to traditional 
tangible assets. The valuation function must account for 
multiple interdependent factors: 
𝐷𝑎𝑡𝑎	𝐴𝑠𝑠𝑒𝑡	𝑉𝑎𝑙𝑢𝑒
= 𝑔(𝐷𝑎𝑡𝑎	𝑄𝑢𝑎𝑙𝑖𝑡𝑦, 	𝑈𝑠𝑎𝑔𝑒	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 	𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙	𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒)	(2) 

Current approaches suffer from three critical limitations. 
First, the lack of standardized valuation methods leads to 
inconsistent reporting practices across firms and industries. 
Second, the intangible nature of data assets makes it difficult 
to establish objective measurement criteria—unlike physical 
assets, data value often depends on combinatorial effects when 
integrated with other datasets [14]. Third, most valuation 
models fail to capture the temporal dimension of data utility, 
particularly in manufacturing environments where equipment 
sensor data may have short operational relevance windows but 
long-term predictive value [15]. 

C. Evolution of Financial Reporting Standards 
Accounting standards have undergone significant 

transformation in response to economic and technological 
shifts. The historical progression from cost-based to fair value 
measurement reflects broader trends toward market-aligned 
valuation [16]. However, standard-setting bodies now face 
unprecedented challenges in adapting frameworks to digital 
assets: 
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦	𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
= ℎ(𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠, 	𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑠)						(3) 

Recent proposals from the Financial Accounting Standards 
Board (FASB) suggest growing recognition of data’s strategic 
importance, yet concrete guidance remains underdeveloped 
[17]. This regulatory uncertainty creates operational 
challenges for manufacturers seeking to capitalize data assets 
while maintaining compliance. The situation demands 
adaptable reporting systems capable of incorporating new 

standards without requiring fundamental architectural 
changes—a capability notably absent from legacy enterprise 
resource planning (ERP) systems [18]. 

IV. HYBRID METHODOLOGY FOR DATA ASSET VALUATION 
The proposed hybrid methodology integrates causal 

modeling, regulatory text analysis, and multi-criteria decision 
analysis into a unified framework for data asset valuation. 
This section presents the technical architecture and 
mathematical formulations that operationalize our approach. 

A. Application of Hybrid Causal-Predictive Valuation to Data 
Assets 

The PLS-SEM framework decomposes data asset valuation 
into measurement and structural components. For manifest 
variables x!  representing observed data characteristics (e.g., 
daily update frequency, schema completeness), we define 
outer model weights w"! that map to latent constructs ξ": 

ξ" =?w"!

#

!$%

x! + ϵ" where ∑w"!
& = 1															(4) 

Manufacturing-specific adaptations include incorporating 
equipment interoperability scores as moderating variables in 
the structural model. The inner model specifies causal paths 
between latent data constructs ξ"  and financial performance 
measures η': 

η' =?β'"

(

"$%

ξ" +?γ)

*

)$%

(ξ" × z)) + ζ'											(5) 

Here z)  represents contextual moderators like production 
line integration levels, with interaction effects captured 
through γ)  coefficients. The bootstrap-enhanced estimation 
(500 resamples) addresses non-normality in manufacturing 
operational data by constructing empirical confidence 
intervals for all path coefficients. 

B. Operationalizing Regulatory Foresight with Hierarchical 
Transformer Architecture 

The regulatory analysis module processes accounting 
standards and SEC filings through parallel attention 
mechanisms. For each regulatory clause i  issued at time t! , 
temporal relevance decays exponentially: 

λ+ = e,-(+!"##$%&,+') α > 0																									(6) 
Semantic analysis employs a fine-tuned RoBERTa model to 

generate obligation vectors o! ∈ ℝ012 . These combine with 
company-specific context c34'#567  (e.g., industry 
classification, current reporting practices) through attention 
weights: 

s89: = σ\W;[λ+o!⊕c34'#567]a																					(7) 
The Regulatory Pressure Index (RPI) aggregates clause-

level impacts for asset class d: 

RPI< =
1
N?s89:,!

>

!$%

⋅ 𝕀(affectsAssetClass(d, i))					(8) 



 

C. Incorporating Regulatory Risk into Multi-Objective 
Decision Curve Analysis 

The decision framework evaluates valuation strategies by 
comparing their net benefit against a baseline of non-
recognition. For threshold probability p+ , the extended net 
benefit function becomes: 

NB(p+) =
TP
n −

FP
n v

p+
1 − p+

w − γ ⋅ RPI																(9) 

Parameter γ  calibrates regulatory risk aversion, derived 
through sensitivity analysis with financial controllers. The 
efficient frontier visualization plots achievable (valuation 
uplift, compliance risk) pairs, enabling strategy selection 
through interactive trade-off exploration. 

D. Integration with Legacy Systems and Data Quality 
Assessment 

The ERP integration layer transforms raw manufacturing 
data into valuation-ready inputs through quality metrics: 

x?@5A!+7 = 1 −
∑ N'
)$% ullCount(a))
m ⋅ n89348<B

															 (10) 

The architecture in Figure 1 shows how the valuation 
module interfaces with existing manufacturing execution 
systems through adapters that maintain XBRL tagging 
consistency while injecting predictive analytics. Real-time 
synchronization ensures financial reports reflect both current 
data valuations and emerging regulatory requirements. 

 
Figure 1. System Architecture with Proposed Data Asset 
Valuation and Governance. 

V. EMPIRICAL EXPERIMENTS 
To validate the proposed hybrid methodology, we 

conducted comprehensive experiments across multiple 
dimensions: causal relationship verification, regulatory impact 
assessment, and decision-making effectiveness. The 
evaluation framework incorporates both quantitative metrics 
and qualitative assessments from financial professionals. 

A. Experimental Setup and Baseline Comparison 
The experimental design compares our hybrid approach 

against three conventional methods: traditional cost-based 
valuation [1], standalone PLS-SEM without regulatory 
integration [3], and rule-based compliance checking [5]. We 
evaluate performance across two manufacturing datasets: 

Dataset A: Operational data from 37 automotive suppliers 
(2018-2022), containing 1.2M+ equipment sensor readings, 
maintenance logs, and corresponding financial statements [19]. 

Dataset B: Supply chain data from 14 electronics 
manufacturers (2020-2023), featuring inventory flows, quality 
inspection records, and quarterly reports [20]. 

Key evaluation metrics include: 
𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
= 1

−
|𝐴𝑐𝑡𝑢𝑎𝑙	𝐵𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑉𝑎𝑙𝑢𝑒|

𝐴𝑐𝑡𝑢𝑎𝑙	𝐵𝑒𝑛𝑒𝑓𝑖𝑡 																						(11) 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒	𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠

=
𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝐸𝑎𝑟𝑙𝑦	𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠
𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦	𝐶ℎ𝑎𝑛𝑔𝑒𝑠 														(12) 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙	𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 							(13) 

B. Competency Mapping Performance 
The PLS-SEM component demonstrates superior 

explanatory power for manufacturing data value chains 
compared to linear regression approaches. Key findings 
include: 
1) Equipment interoperability (β=0.42, p<0.01) and data 

freshness (β=0.38, p<0.05) show strongest effects on 
operational efficiency metrics 

2) Production line integration moderates the data quality-
financial performance relationship (γ=0.31, p<0.01) 

3) Bootstrap validation confirms stability across 
manufacturing subsectors (95% CI [0.28, 0.47]) 

Table 1 compares path coefficient stability across methods: 

Table 1. Path Coefficient Stability Comparison (500 
Bootstrap Samples) 

Method Average CI 
Width 

Significant Paths 
(%) 

Proposed Hybrid 0.18 92 
Standalone PLS-

SEM 0.25 84 

Linear Regression 0.31 68 

C. Regulatory Impact Assessment 
The hierarchical transformer architecture achieves 89% 

precision in identifying relevant regulatory changes, with RPI 
scores correlating strongly (r=0.76) with subsequent 
compliance adjustments. A temporal decay parameter, α=0.15, 
is empirically determined to optimally balance the recency and 
persistence of manufacturing-related standards. 

Figure 2 illustrates the framework's ability to conduct a 
granular analysis of how different regulatory clauses affect the 
RPI across various data asset classes. The analysis reveals that 
clauses concerning Disclosure Control and Standardization 
exert the most significant regulatory pressure. For example, 
Customer Information assets demonstrate exceptionally high 
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sensitivity to Disclosure Control mandates (ΔRPI=0.71), a 
value far exceeding the predefined significance threshold of 
0.42. Similarly, new Standardization requirements pose a 
substantial impact on both Operational Data (ΔRPI=0.66) and 
Financial Records (ΔRPI=0.53). In contrast, while still 
significant, regulations related to Data Retention show a more 
uniform impact across asset classes like Product Lifecycle 
Data, Operational Data, and Customer Information. This 
detailed sensitivity mapping enables an enterprise to move 
beyond a one-size-fits-all compliance strategy, allowing for 
the targeted allocation of resources to the specific intersections 
of regulatory changes and data asset categories that present the 
most critical risk. 

 
Figure 2. Regulatory Pressure Index sensitivity to clause types 
and asset classes. 

D. Decision-Making Effectiveness 
Decision curve analysis demonstrates superior net benefit 

across probability thresholds: 
ΔNB = NBC7D8!< −max(NBE5B9A!69B)																(14) 

The proposed method achieves positive ΔNB for 83% of 
test cases, with particularly strong performance in high-
uncertainty scenarios (mean ΔNB=0.21 when 0.4<p_t<0.6). 

Figure 3 provides a visual confirmation of this superiority 
by plotting the efficient frontier for the competing strategies. 
The frontier maps the achievable Valuation Uplift (y-axis) 
against the corresponding Compliance Risk (x-axis), with 
optimal strategies located toward the upper-left. As illustrated, 
the curve representing the proposed Hybrid Approach (solid 
line) consistently dominates the two baseline models. This 
dominance means that for any given level of acceptable 
compliance risk, our framework offers a substantially higher 
valuation uplift. For instance, at a moderate compliance risk 
level of 0.4, the hybrid approach achieves a valuation uplift of 
approximately 0.85, whereas Baseline 1 and Baseline 2 only 
reach around 0.7 and 0.6, respectively. 

This superior risk-return profile, which quantitatively 
dominates 78% of the solution space, is a direct result of 
integrating the causal valuation model with the dynamic 
regulatory risk assessment.  It equips financial managers with 
a flexible and powerful tool to select a reporting strategy that 

aligns with their firm's specific risk appetite—whether 
pursuing a conservative, low-risk valuation or a more 
aggressive, high-reward capitalization—while consistently 
outperforming non-integrated, conventional approaches. 

 
Figure 3. Trade-off surface between valuation uplift and 
compliance risk. 

E. Ablation Study 
We systematically evaluate component contributions 

through controlled removals to understand the relative 
importance of each module in our hybrid framework. Table 2 
presents the ablation study results, demonstrating how the 
removal of individual components affects both valuation 
accuracy and compliance timeliness metrics on Dataset A. 

Table 2. Ablation Study Results (Dataset A) 

Configuration 
Valuation 
Accuracy 

Compliance 
Timeliness 

Full Hybrid Model 0.87 0.91 
Without Regulatory 
Module 

0.85 0.62 

Without Causal Paths 0.71 0.88 
Without Decision 
Integration 

0.83 0.89 

The ablation results reveal distinct patterns in component 
contributions. The regulatory module proves most critical for 
compliance performance, with its removal resulting in a 
substantial 29% reduction in compliance timeliness (from 0.91 
to 0.62). This finding underscores the importance of real-time 
regulatory analysis in maintaining awareness of evolving 
reporting requirements. Conversely, the causal paths 
component demonstrates the greatest impact on valuation 
accuracy, where its absence leads to a 16% performance 
degradation (from 0.87 to 0.71). This confirms that the PLS-
SEM methodology effectively captures the complex 
relationships between data characteristics and financial 
outcomes in manufacturing contexts. The decision integration 
module maintains a balanced contribution across both 



 

objectives, with relatively modest impacts when removed, 
suggesting its primary value lies in optimizing the trade-offs 
between competing objectives rather than maximizing 
individual metrics. 

VI. DISCUSSION AND FUTURE WORK 

A. Limitations and Robustness Analysis 
While the hybrid framework demonstrates strong 

performance across multiple evaluation metrics, several 
limitations warrant discussion. The PLS-SEM component 
assumes linear relationships between latent constructs and 
observed variables, potentially oversimplifying complex 
manufacturing data interactions. Although bootstrap methods 
mitigate this concern, alternative approaches like generalized 
structured component analysis could better capture non-linear 
dynamics [21]. The regulatory pressure index, while effective 
in controlled experiments, may require calibration for smaller 
manufacturers with limited compliance teams. Field tests 
revealed that RPI thresholds need adjustment when applied to 
firms operating in fewer regulatory jurisdictions [22]. 

B. Broader Applicability and Potential Extensions 
The methodology’s core principles extend beyond 

manufacturing to other data-intensive industries facing similar 
valuation-compliance challenges. Healthcare organizations 
managing patient-derived data could particularly benefit from 
the causal modeling approach, as clinical outcomes often 
depend on complex data interactions [23]. The framework 
could incorporate additional data types by expanding the latent 
construct definitions—supplementing current manufacturing 
metrics with domain-specific variables like clinical trial 
phases or drug discovery pipelines. Future iterations might 
integrate blockchain-based provenance tracking to enhance 
data lineage documentation, addressing growing audit 
requirements for AI training datasets [24]. 

C. Ethical Considerations and Responsible AI Implementation 
Deploying automated valuation systems raises important 

ethical questions about algorithmic transparency and 
accountability. The black-box nature of transformer models in 
the regulatory module could obscure critical compliance 
decisions, potentially violating right-to-explanation principles 
in some jurisdictions [25]. We recommend implementing 
hybrid human-AI review processes for high-stakes valuation 
decisions, particularly when dealing with financially material 
data assets. The framework should also incorporate fairness 
constraints to prevent systematic undervaluation of datasets 
from certain production lines or geographic regions—a risk 
identified during sensitivity testing [26]. Future versions could 
integrate ethical impact assessments directly into the decision 
curve analysis, treating fairness as a third dimension alongside 
valuation and compliance. 

VII. CONCLUSION 
The hybrid causal-predictive framework establishes a robust 

methodology for addressing the dual challenges of data asset 

valuation and regulatory-integrated financial reporting in 
manufacturing enterprises. By systematically integrating PLS-
SEM with hierarchical transformer architectures, the approach 
resolves critical limitations of conventional valuation models 
while maintaining dynamic responsiveness to evolving 
compliance requirements. The experimental results 
demonstrate measurable improvements in both valuation 
accuracy and regulatory timeliness, particularly for complex 
manufacturing environments where data characteristics exhibit 
non-linear interactions with financial performance metrics. 

The framework ’ s practical value lies in its 
operationalization of theoretical constructs through 
measurable indicators and decision-support visualizations. 
Manufacturing firms can leverage the system to quantify 
previously intangible data value drivers—such as equipment 
interoperability and production line integration — while 
simultaneously monitoring regulatory exposure through the 
novel RPI metric. This dual capability addresses a 
fundamental pain point in contemporary financial reporting, 
where data assets remain underutilized in balance sheets due 
to measurement uncertainties and compliance risks. 

From a technical perspective, the integration of causal 
modeling with real-time regulatory analysis creates a feedback 
loop that continuously refines valuation estimates as new 
standards emerge. The decision curve analysis component 
operationalizes this relationship by quantifying trade-offs in 
monetary terms, enabling financial managers to make 
informed choices about data asset capitalization strategies. 
The architecture’s interoperability with legacy ERP systems 
ensures practical deployability without requiring costly 
infrastructure overhauls. 

The methodology’s theoretical contributions extend beyond 
manufacturing applications, providing a generalizable 
template for valuing complex intangible assets under 
regulatory uncertainty. The principles demonstrated here—
particularly the combination of causal inference with 
predictive compliance analytics—could be adapted to other 
domains facing similar measurement and reporting challenges. 
Future research should explore extensions to additional data 
types and regulatory regimes, as well as deeper investigations 
into the ethical dimensions of automated valuation systems. 

Ultimately, this work bridges a critical gap between 
accounting theory and data science practice, offering 
manufacturing firms a systematic approach to harness their 
data assets’ full financial potential while maintaining rigorous 
compliance standards. The framework’s success in empirical 
testing suggests substantial unrealized value in enterprise data 
ecosystems, waiting to be unlocked through advanced 
analytical techniques tailored to the realities of modern 
financial reporting. 
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