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Abstract

Generative Al (GenAl) has emerged as one of the most
transformative forces in artificial intelligence, profoundly
impacting content creation, scientific research, and nu-
merous application domains [1, 2]. At its core, these
models learn the underlying distributions from existing
data to generate novel, high-quality synthetic data [3].
Within this landscape, Foundation Models play a pivotal
role. These are typically large-scale models pre-trained
on massive datasets, possessing powerful generalization
capabilities that serve as a robust baseline for various
downstream tasks, thereby significantly reducing the de-
velopment cost and time for Al applications [1]. Natural
Language Processing (NLP), one of the first fields where
GenAl achieved major breakthroughs, has largely bene-
fited from the development of the Transformer model [4].
Since its introduction in 2017, the attention-based Trans-
former architecture has demonstrated outstanding perfor-
mance on tasks such as machine translation, language un-
derstanding, and text generation. This has led to the de-
velopment of foundation models, particularly Pre-trained
Language Models (PLMs), which have greatly enhanced
the performance of text generation tasks [5]. However, tra-
ditional text generation methods, especially autoregressive
(AR) models, suffer from low inference efficiency when
processing long texts [5,6]. This paper provides a com-
prehensive review of Diffusion Models in NLP, exploring
their fundamental principles, applications, and future di-
rections.

Index Terms— Diffusion Models, Natural Language Process-
ing (NLP), Generative Al, Text Generation, Transformer Mod-
els, Deep Generative Models, Literature Review.

1 Introduction

In recent years, diffusion models have emerged as a novel class
of deep generative models, initially achieving breakthrough
success in the image generation domain. They have surpassed
previous state-of-the-art (SOTA) models, such as generative
adversarial networks (GANS), in their ability to generate high-
fidelity and diverse samples [7—10]. The core principle of dif-
fusion models involves a forward process that systematically
adds noise to data until it conforms to a simple prior distribu-
tion (e.g., random noise), followed by a learned reverse pro-

cess that gradually denoises the signal to recover a data sam-
ple [3,11,12].

As research has progressed, the powerful capabilities of dif-
fusion models have been explored for applications in Natural
Language Processing, where they have shown immense poten-
tial in tasks like text generation [7, 13, 14]. Compared to tradi-
tional AR models and other generative frameworks like vari-
ational autoencoders (VAEs), GANs, and normalizing flows
(NFs), diffusion models exhibit several distinct advantages in
NLP [5,6, 11]. Specifically, diffusion models offer greater
flexibility in handling complex conditioning, as they can it-
eratively refine intermediate outputs based on given inputs to
more easily generate high-quality target text [5, 6]. They also
demonstrate inherent capabilities for global planning and self-
correction, which are crucial for generating coherent and ac-
curate long texts [15]. Furthermore, the training of diffusion
models is generally more stable than that of GANs [11]. Al-
though vanilla diffusion models can be slow at sampling, ap-
propriate acceleration methods allow for an effective trade-off
between inference time and generation quality [5,6]. The as-
cent of diffusion models has even begun to challenge the long-
held view that large language models must rely on the autore-
gressive paradigm, as illustrated in Figure 1, suggesting that
the principles of generative modeling may be the true key to
language intelligence [16].

Given the rapid development of diffusion models in NLP
and their unique advantages, a systematic review of current
research progress holds significant academic value and offers
practical insights. While some surveys on diffusion models
exist, they typically cover foundational principles, algorithmic
variants, or applications in specific domains. A comprehen-
sive review focused specifically on the application of diffusion
models in NLP—particularly an in-depth analysis of model
architectures, training methods, diverse application scenarios,
and outstanding challenges—is currently lacking [9, 13].

This review aims to fill this gap by providing researchers
and practitioners with a clear, comprehensive guide to the in-
novations and frontiers of diffusion models in the NLP do-
main. We systematically survey the development history, core
model architectures, and training methodologies of diffusion
models in NLP. The review focuses on analyzing their applica-
tion in specific NLP tasks, including text generation (both au-
toregressive and non-autoregressive), text editing, and cross-
modal generation, while also discussing their advantages and
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Figure 1: Conceptual Comparison of Text Generation Processes
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Figure 1: Conceptual comparison of text generation processes.
Left (Autoregressive): Models like GPT generate text se-
quentially, predicting one token at a time. Right (Diffusion):
Models start with random noise and iteratively refine the entire
sequence in parallel.

limitations compared to traditional methods. Furthermore,
we explore the integration of diffusion models with other
prominent NLP models, such as Transformers and PLMs, and
discuss current research challenges, including sampling effi-
ciency, the modeling of discrete text data, and controllability.
Finally, we provide an outlook on future research directions.
By critically analyzing the contributions and shortcomings of
existing work, this review seeks to highlight its novelty and
value, thereby guiding future research and application of dif-
fusion models in NLP.

The structure of this review is as follows: Section 2 de-
tails the foundational theory and principal variants of diffu-
sion models. Section 3 focuses on the application of diffusion
models in text generation and other NLP tasks. Section 4 dis-
cusses the integration of diffusion models with Transformer-
based architectures. Section 5 covers optimization and accel-
eration techniques. Section 6 analyzes evaluation metrics and
performance. Section 7 highlights the challenges and future
outlook. Finally, Section 8 concludes the review.

2 Fundamentals of Diffusion Models

Diffusion models, an emerging class of generative models,
draw inspiration from non-equilibrium thermodynamics to
model complex data distributions by simulating a diffusion
process [17]. (In this paper, we adopt the convention that
bold lowercase letters, such as x, denote vectors, while bold

uppercase letters denote matrices). The core concept in-
volves two processes: a forward process that progressively
adds noise to an original data sample until it degenerates
into a known prior distribution (typically a standard Gaus-
sian), and a reverse process that learns to invert the forward
process, gradually recovering a clean data sample from the
noise [5,7,10,11,18,19]. This “corruption-and-reconstruction”
paradigm provides a new framework for high-quality data gen-
eration [18].

Specifically, the forward diffusion process is modeled as a
Markov chain of length 7' (timesteps) [5, 17]. In this pro-
cess, the data xg gradually evolves into noise x7. The tran-
sition probability ¢(x;|x;_1) at each step, which describes the
change from state x;_1 to Xy, is typically defined by the ad-
dition of Gaussian noise [11, 19]. By the Markov property,
the joint probability of the entire forward process is given by
Eq. (1):

T
q(x1.7|%0) = HQ(Xt|Xt—1)

t=1

(D

An important property of the forward process is that the noisy
data x; at any intermediate timestep ¢ can be sampled directly
from the original data xy. For Gaussian diffusion, this has a
closed-form solution as shown in Eq. (2):

q(x¢|x0) = N (%45 Varxo, (1 — ar)I) 2
where &; = szl as, and oy = 1 — ;. The sequence of
variances, {3; }_,, is known as the noise schedule and is typi-
cally pre-defined to increase with . Ast — T, & approaches
zero, such that x7 approximates a standard Gaussian distribu-
tion A/(0,I) [11].

The reverse diffusion process aims to learn the inverse path,
starting from the noise distribution p(x1) = N(0, 1) and pro-
gressively denoising it to generate a data sample [11, 15]. This
process is also modeled as a Markov chain, where the tran-
sition probability pg(x:—1|x¢) is approximated by a parame-
terized model, typically a deep neural network (the denois-
ing network) [5, 11]. The training objective is to enable the
learned reverse process to effectively recover the original data
distribution from noise. This is typically achieved by max-
imizing the variational lower bound (VLB) on the data log-
likelihood [16,20]. In practice, the training objective is often
simplified to minimizing the mean squared error (MSE) be-
tween the true added noise € and the noise predicted by the
model €y, as shown in Eq. (3):

Lsimple = ]Et,xo,e “|6 - 69(@}(0 + v 1-— O_Ztea t)||2] (3)
This loss function trains the model €g to predict the noise that
was added to the original data x( to produce the noisy sample
X¢.

Since the proposal of Denoising Diffusion Probabilis-
tic Models (DDPM) [19], diffusion models have garnered
widespread attention. DDPM and its variants are among the
most widely used diffusion frameworks today [14,21]. In par-
allel, Score-Based Generative Models (SGM) and works that
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unify both approaches within a Stochastic Differential Equa-
tion (SDE) framework have provided alternative mathemat-
ical perspectives on the data perturbation and recovery pro-
cess [7,20,22].

2.1 Principles and Variants of Diffusion Models

Diffusion Models model complex probability distributions by
simulating a dual-stage process: a Forward Diffusion Process
and a Reverse Diffusion Process [3,7,12,23].

In the forward process, a data sample xq is progressively
perturbed by adding noise over T timesteps, eventually trans-
forming it into pure noise [5, 6, 17, 19]. This is modeled as a
Markov chain, where the transition probability is defined as:

= N(x¢; V1 — Bixe_1, BiI)

The reverse diffusion process aims to generate new samples
by starting from pure noise and progressively denoising it
[5,17,19]. This process is also modeled as a Markov chain,
implemented via a parameterized reverse transition probabil-
ity pg(x¢—1|x¢), which is also modeled as a Gaussian:

“)

Q(Xt\Xt—l)

:N(thl;ue(xht)aEe(xht)) (5)

Pe(Xt71|Xt)

where the mean py and variance Xy are parameterized by
a neural network, which typically adopts a U-Net or Trans-
former architecture [5,6,8,11].

Variants of diffusion models differ in their principles and
implementation. Denoising Diffusion Probabilistic Models
(DDPM) are the canonical implementation [14,18,21]. Score-
Based Generative Models (SGM) learn the data distribution’s
score function [7,23]. Latent Diffusion Models (LDM) repre-
sent a significant advance in computational efficiency by op-
erating in a compressed latent space [10, 18, 21, 24]. Other
notable variants include Denoising Diffusion Implicit Mod-
els (DDIM), which accelerate sampling by defining a non-
Markovian forward process [25].

2.2 Handling of Text Data

A core challenge in applying diffusion models to text genera-
tion is bridging the gap between the continuous-space formu-
lation of diffusion and the discrete nature of text data [14].
Researchers have primarily pursued two categories of ap-
proaches: discrete text diffusion models and continuous text
diffusion models [5, 13, 14].

The fundamental principle of a text diffusion model involves
recovering a target text from a noisy input through a progres-
sive denoising process [5, 6]. The reverse process can be gen-
erally expressed as:

Pe(xo T|C Xt 1|Xt7 (6)

n{:]%

where c represents the input condition [5, 6].
Discrete text diffusion models operate directly at the to-
ken level, generalizing the diffusion process to a discrete state

space [14]. Continuous text diffusion models, conversely, en-
code discrete text into a continuous space where diffusion and
denoising are performed [14]. Each approach has trade-offs
regarding faithfulness to the data versus training stability and
semantic richness [13].

2.3 Key Designs in the Diffusion Process

The performance of text diffusion models is critically influ-
enced by four key design components: the denoising network,
the noise schedule, the objective function, and the condition-
ing strategy [5,6].

Denoising Network: The denoising network is the core of
the reverse process. For sequential data like text, the Trans-
former architecture is widely adopted, as it allows the model
to capture complex, long-range dependencies between tokens
during the iterative refinement process [24].

Noise Schedule: The noise schedule defines the magnitude
of noise added at each forward diffusion step. A well-designed
schedule (e.g., linear or cosine) is crucial for generation qual-
ity, as it controls how quickly the original data signal is cor-
rupted [19,21].

Training Objective: The training objective is to learn
the reverse denoising process, typically by minimizing the
MSE between the predicted noise and the actual added noise
(Eq. (3)). This simplified objective has been shown to be ef-
fective and stable for training high-quality generative models.

Conditioning Strategies: Conditioning strategies incorpo-
rate external information to guide generation. A powerful
and common method is classifier-free guidance, which trains
a single model to handle both conditional and unconditional
generation, enabling strong, steerable synthesis at inference
time [?,5,11].

3 Applications of Diffusion Models in
NLP

Diffusion Models have achieved remarkable success in do-
mains like image synthesis and are now showing significant
potential to advance NLP tasks [26]. This section reviews
their applications across NLP, detailing implementation meth-
ods, performance, and prospects.

3.1 Text Generation

Text generation aims to produce high-quality, coherent, and
meaningful text. While traditional methods have been dom-
inated by autoregressive models, diffusion models have re-
cently emerged as a powerful alternative [12, 13]. Diffusion
models offer unique advantages, including a natural fit for non-
autoregressive (NAR) generation, better controllability, and
flexible speed—quality trade-offs.

A variety of diffusion model variants have been developed
for text generation. DIFFUSEQ and DIFFUSUM applied con-
ditional diffusion to sequence-to-sequence tasks [13]. DIF-
FORMER, a Transformer-based model, showed strong perfor-
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mance in machine translation and summarization [13]. The
masked diffusion language model framework achieved state-
of-the-art perplexity scores, demonstrating powerful modeling
capabilities [27].

A key evaluation is comparison with autoregressive mod-
els like the GPT series. While GPT excels at fluent text gen-
eration [1], diffusion models offer complementary strengths.
LLADA, the first 8B-parameter diffusion-based large lan-
guage model, demonstrates competitive performance with
strong LL.Ms like LLAMA-7B in in-context learning [12, 16].
Notably, LLaDA mitigates the “reversal curse” seen in some
AR models. However, limitations remain: some models are
restricted to fixed-length text [13], and scaling diffusion mod-
els incurs significant computational cost [16].

3.2 Text Editing and Manipulation

Diffusion models are expanding into text editing and manip-
ulation. Unlike autoregressive models, diffusion models treat
editing as iterative denoising. For example, DIFFUSER con-
ceptualizes edit operations as a noising process reversed by
a denoising model [13]. The SUNDAE model handles arbi-
trary infilling within a template, providing a flexible frame-
work for text repair [13]. This non-AR nature is advantageous
for edits requiring global context. While direct quantitative
comparisons with baseline editors are limited, the ability of
diffusion models to perform text-guided image editing is well
established, showcasing nuanced, instruction-based manipula-
tion [25,28,29].

3.3 Text Representation Learning

In complex cross-modal tasks (e.g., text-to-image genera-
tion), text representations must capture fine-grained details.
For instance, the SWINV2-IMAGEN model enhances text un-
derstanding by extracting entity and relationship embeddings
from scene graphs [8]. However, the specific advantages of us-
ing diffusion models for representation learning per se remain
unclear from current literature. Future research is needed to
clarify the potential of diffusion models in this domain.

3.4 Machine Translation

Diffusion models have been applied to machine translation
with promising results [13]. Several variants demonstrate
strong translation capabilities. For example, the diffusion-
based LLADA model can effectively translate between Chi-
nese, English, and German [16]. Other models like CDCD
and SUNDAE also report high performance [13]. While these
studies indicate excellent performance, they provide few de-
tails on diffusion’s advantages for very long or complex sen-
tences. Moreover, the potential of diffusion models for low-
resource languages is intriguing but not yet detailed in avail-
able sources [30].

3.5 Dialogue Generation

In dialogue generation, diffusion models offer notable advan-
tages, particularly in maintaining context and generating di-
verse responses [13, 16]. They effectively integrate multi-turn
dialogue history; for example, LLADA accurately captures
extended conversation context [16]. The LATENT DIFFUSION
ENERGY-BASED MODEL (LDEBM) is one approach that ad-
dresses issues like mode collapse by combining diffusion with
an energy-based model [13]. Additionally, integrating external
knowledge can further improve dialogue relevance [12].

3.6 Complex Reasoning Tasks

Diffusion models are being applied to complex reasoning in
NLP. A notable development is the DIFFUSION OF THOUGHT
(DOT) method [15], which introduces a chain-of-thought style
reasoning within the diffusion framework. DoT performs rea-
soning by refining a sequence of latent “thought” variables in
parallel over multiple steps. This allows multi-step reasoning
to diffuse in parallel, offering a novel approach to tasks requir-
ing several logical steps. DoT has been applied successfully to
tasks needing sophisticated math and logic reasoning, demon-
strating a powerful and novel reasoning mechanism [15].

3.7 Other Applications and Cross-Modal Fu-
sion

Diffusion models are being extended to drive innovation in
NLP and cross-modal tasks. In historical language studies,
ORACLE BONE SCRIPT DECIPHER (OBSD) uses diffusion
to interpret ancient scripts [31]. In computer vision, OVDIFF
uses a diffusion model for open-vocabulary semantic segmen-
tation without task-specific training [32]. Multimodal Diffu-
sion Models, often within Multimodal LLMs, aim to process
and fuse different modalities [9,33,34]. A common architec-
ture uses a Transformer to create shared embeddings, which
then condition a diffusion model [10,24]. The TRANSFUSION
model enables seamless integration of discrete and continuous
modalities within a single model [28].

4 Integration with Transformer Mod-
els

The Transformer architecture, with its powerful self-attention
mechanism, is dominant in NLP [4, 18]. Given Transformers’
prowess in sequence modeling, integrating them with diffusion
models promises enhanced performance on complex genera-
tive tasks [14].

Diffusion Transformers (DiTs) exemplify this integration,
replacing the typical U-Net backbone in vision diffusion mod-
els with a Transformer [24,25]. In the multimodal domain,
combining Transformers and diffusion is especially powerful.
Latent Diffusion Models also often use Transformers to en-
code conditioning information (like text) into latent embed-
dings fed into the U-Net via cross-attention [10].
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Table 1: Overview of Representative Diffusion Models in NLP and Related Fields.

Model (Year) Primary Task / Domain

Key Architectural Feature

Reported Advantage /
Contribution

Diffusion-LM (2022) Unconditional Text Genera-

tion

Masked Diffusion LM (2024) Language Modeling

Difformer (2023) Machine Translation, Sum-

marization

LLaDA (8B) (2024) Instruction Following, Dia-

logue

DoT (2024) Mathematical/Logical Rea-

soning

Stable Diffusion (LDM) (2022) Text-to-Image Generation

Transformer in continuous
embedding space

Transformer on discrete to-
kens with masking

Transformer-based denois-
ing backbone

Large-scale (8B param) dif-
fusion LM

Diffusion  with
“thought” vectors

parallel

Diffusion in a compressed
latent space (U-Net)

First to show diffusion LMs
can achieve strong perplex-
ity.

Achieved  state-of-the-art
perplexity among diffusion
models.

Competitive
BLEU/ROUGE scores
VS. strong Transformer
baselines.

On-par with LLaMA-3 8B
on dialogue benchmarks;
mitigates repetition.

Outperforms AR chain-of-
thought on some reasoning
benchmarks.

High efficiency and quality,
enabling widespread use.

Beyond direct use, researchers are improving the Trans-
former architecture for diffusion. The DiffTransformer pro-
poses a “differential attention” to reduce attention noise [4].
Its differential attention operator is calculated as:

. QKY
DiffAttn(Q, K, V) = | softmax
Vdy .
T (7

— X - softmax QK )V
Vi

where query, key, and value projections are split into two
groups, and \ is a learnable scalar.

Will Transformers replace diffusion models? Current con-
sensus is they are complementary rather than replacements
[24]. Many SOTA models (LDM, DiT) combine both effec-
tively. However, some work explores pure-Transformer gener-
ation, such as Google’s Muse, which operates on discrete to-
kens and achieves SOTA text-to-image results efficiently with-
out continuous diffusion [35].

S Optimization and Acceleration

Despite their outstanding generative performance, diffusion
models face challenges in computational cost and slow sam-
pling [7,22,26,36].

5.1 Sampling Acceleration

Slow sampling is a major bottleneck. Key acceleration strate-
gies include:

* Discretization Optimization:

Improving numerical

solvers for the diffusion SDE/ODE [7, 15].

* Non-Markovian Sampling: Relaxing the Markov as-
sumption to allow larger reverse steps. Denoising Dif-
fusion Implicit Models (DDIM) [25] can cut steps from

1000 to as few as 50.

« Distillation:

Progressive distillation trains a student

model to perform two denoising steps of a teacher in one
step, recursively halving inference time [7].

Additionally, efficiency improves by performing diffusion in a
compressed latent space (as in LDM) [10,21].

5.2 Maximum Likelihood Estimation Enhance-
ment

Improving log-likelihood is crucial [7]. Methods include:

* Noise Schedule Optimization: Nonlinear schedules like
cosine can improve performance [19,21].

* Objective Design: Tailoring the loss to the task can yield
better results [5].

* Learnable Reverse Variance: Learning the reverse pro-
cess variance can improve likelihoods [7].

5.3 Model Architecture and Inference Acceler-

ation

Refining the network architecture is another key lever [21,24].
For inference, model compression is widely used [7, 18]:
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* Knowledge Distillation: A large teacher model trains a
smaller student model to speed up inference [7,25].

* Pruning and Quantization: Techniques like QLoRA
combine 4-bit quantization with low-rank adaptation for
efficient fine-tuning and inference [18].

6 Evaluation Metrics and Performance
Analysis

Evaluating diffusion models requires diverse metrics to assess
quality, fidelity, diversity, and efficiency. For cross-modal gen-
eration (e.g., text-to-image), standard metrics are Fréchet In-
ception Distance (FID) and CLIP score [8,24,28,35,37]. For
text generation, traditional metrics include BLEU, ROUGE,
and perplexity [37]. However, these often miss nuanced qual-
ities like global coherence or logical consistency, indicat-
ing a need for more comprehensive evaluation protocols for
diffusion-generated text [12]. For tasks requiring precise cor-
rectness (like reasoning), accuracy is key [15]. Several fac-
tors influence performance including model architecture, data
scale/quality, and training strategy. Despite SOTA results, dif-
fusion models have known challenges. They can be sensi-
tive to input noise and remain computationally intensive [33].
More critically, current automatic metrics for text often fail to
capture high-level attributes of generated text [12].

7 Challenges and Future Outlook

Despite their potential, diffusion models in NLP face several
challenges [6]:

* Computational Cost and Sampling Speed: High cost
and slow generation remain prominent issues [10, 12,20,
22,37].

* Discrete Data Modeling: A fundamental mismatch ex-
ists between discrete text and continuous diffusion for-
mulations [5, 6].

* Interpretability and Controllability: Diffusion pro-
cesses are less interpretable, and fine-grained control re-
mains challenging [3, 20].

* Data, Safety, and Bias: Diffusion models can learn soci-
etal biases or produce harmful content. Developing meth-
ods for content moderation and “detoxification” is crucial
for responsible Al deployment [1,3,5,6].

* Multilingual and Low-Resource Scenarios: Extending
diffusion models to multilingual or low-resource settings
is largely unexplored and will require innovative strate-
gies.

Future Outlook: The future of diffusion models in NLP is
promising, with key directions including:

1. More Powerful and Efficient Models: Continue scal-
ing model size and exploring novel architectures, while
developing training and sampling methods that improve
efficiency [8, 11,25].

2. Broader NLP Applications: Apply diffusion models
to a wider range of tasks, including analytical tasks,
knowledge graph construction, and structured prediction
[5,7,22].

3. Synergy with Other Technologies: Deeper integrate
diffusion with PLMs, combine with Transformers and
knowledge graphs, and develop unified multimodal mod-
els [5,6,28].

4. Advancing Language Representation: Move toward a
continuous language space for representing text, elimi-
nating discrete tokenization limits [12].

5. Improved Evaluation and Responsible AI: Create
more holistic evaluation benchmarks and focus on reli-
ability, controllability, and bias mitigation to ensure safe
deployment [9, 34].

The rise of foundation models and generative Al will continue
to shape diffusion models’ trajectory in NLP [1,2].

8 Conclusion

This review has provided a comprehensive overview of diffu-
sion models in NLP. As powerful generative tools [3], diffu-
sion models have shown a remarkable ability to generate high-
quality data [23]. Their innovative role and immense potential
in NLP are increasingly evident [14].

Current research demonstrates significant advantages on
core NLP tasks like text generation and editing [14]. Com-
pared to AR models, diffusion models excel in parallel gen-
eration and fine-grained controllability. Advanced applica-
tions such as Diffusion-of-Thought show potential to surpass
the AR paradigm for complex reasoning tasks [15]. Large-
scale models like LLaDA are now competitive with traditional
LLMs, while offering unique benefits like bidirectional gener-
ation [16].

However, challenges remain, including high computational
costs, difficulty modeling discrete text, and interpretability and
safety issues [3]. Effectively modeling diffusion for text, op-
timizing sampling efficiency, and better leveraging PLMs are
key open questions.

Looking ahead, the potential of diffusion models in NLP is
vast. Central focus will be on more efficient training and in-
ference [37]. Architectural innovation—particularly integrat-
ing Transformers [4]—will be critical. The synergy between
these technologies will likely spur novel applications in low-
resource languages, advanced text analysis, and multimodal
fusion [11]. In summary, diffusion models are bringing new
vitality to NLP. While challenges persist, ongoing research
is poised to overcome these obstacles, fully unleashing their



Innovations and Frontiers of Diffusion Models in Natural Language Processing: A Review

power to build more intelligent and creative language tech-
nologies. Ultimately, by bridging the gap between parallel and
sequential processing, diffusion models are not just a new tool
for NLP but a step towards more flexible and human-like lan-
guage intelligence.
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