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Abstract—In this paper, we address the challenge of improving
hazard detection in autonomous driving systems, particularly in
scenarios where labeled data is scarce or unavailable. This issue
is critical in real-world applications, where diverse and unpre-
dictable driving situations make it difficult to label every poten-
tial hazard accurately. Recently, the Challenge of Out-of-Label
(COOOL) benchmark has been introduced at WACV2025 to pro-
mote research on this challenge. To tackle this issue, we present
a novel method that integrates a Bootstrapping Language-Image
Pretraining (BLIP)-based scenario generation framework with
a threshold-based hazard scoring system, thereby enhancing
both scenario comprehension and detection accuracy within the
benchmark. By incorporating robust driver state logic, bounding
box analysis, and BLIP-generated scenario descriptions, our
method initially achieves a 40% performance score. Building
upon this foundation, we further integrate depth maps and
optical flow to improve hazardous object discrimination, resulting
in an additional 20% performance improvement. This culminates
in a final score of 63% on the public benchmark leaderboard
and 50% on the private leaderboard. To foster continued ad-
vancements in autonomous driving research, we will make all
code and visualization tools publicly available.

Index Terms—out-of-label, optical flow, depth maps, BLIP,
image caption,hazard detection

I. INTRODUCTION

With the rapid advancement of computer vision technolo-
gies [1]–[4], perception tasks in autonomous driving have
evolved from fundamental 2D object detection [5]–[7], optical
flow [8]–[10], and depth estimation [11]–[13] to more complex
scene understanding through video anomaly detection. Recent
breakthroughs in large-language Models (LLMs) [14]–[16]and
Vision-Language Models(VLMs) [17]–[19] have demonstrated
remarkable zero-shot reasoning capabilities, enabling LLMs to
generate high-quality semantic interpretations without domain-
specific training. These features give VLMs unique advan-
tages in autonomous driving systems: effectively detecting
road obstacles and identifying potential risk zones in driving
scenarios through interpretable semantic descriptions. Such
multi-modal (image to text) provides intuitive risk assessment
references by establishing a bidirectional mapping between
drive sense understanding and natural language generation,
significantly enhancing decision-making transparency and reli-
ability. Consequently, semi-supervised learning,few-shot learn-
ing, and zero-shot generative with multi-modal perception

Fig. 1. A simplified result of our approach is displayed on the selected frame
from one of the test videos. The colors represent the hazard state of each
object: red indicates hazardous objects, and green indicates safe objects.

technologies have emerged as crucial research directions for
improving driver-sense adaptability and safety redundancy
in autonomous driving systems. While existing autonomous
driving systems demonstrate remarkable proficiency in detect-
ing predefined object categories (e.g., vehicles, pedestrians)
within conventional benchmarks like KITTI, nuScenes and
Waymo, their reliance on closed-set annotation paradigms
creates critical safety blind spots. Current datasets predomi-
nantly focus on nominal driving scenarios, where over 98% of
annotated objects fall within 20 common categories according
to nuScenes statistics. According to NHTSA reports, this
paradigm leaves systems fundamentally unprepared for Out-
of-Distribution (OOD) hazards - unexpected objects and sce-
narios that account for 62% of real-world collision incidents.
Such vulnerabilities manifest particularly in handling exotic
biological entities (e.g., kangaroos crossing Australian high-
ways), amorphous obstacles (e.g., wind-blown debris), and
edge-case interactions (e.g., pedestrians emerging from visual
occlusions), where traditional perception pipelines frequently
fail to trigger appropriate emergency responses.

This study is based on the “Out-of-Label Hazards in
Autonomous Driving (COOOL)” benchmark [20], a multi-
modal dataset of high-resolution videos captured from real-
world driving scenarios. COOOL is specifically designed to
address the critical but underexplored challenge of detecting



out-of-distribution (OOD) hazards, which are categorized into
three types: 1) Exotic biological threats (e.g., kangaroos,
wild boars), 2) Unpredictable inanimate hazards (e.g., drifting
plastic bags, smoke occlusion), and 3) Abnormal interactions
with standard objects (e.g., erratic pedestrians). To deal with
this problem, we propose the following methods:

• Multi-modal Hazard Filtering: Establish a priori con-
ditions and optical flow and depth estimation to identify
potential hazards based on motion discontinuity and spa-
tial proximity.

• Zero-Shot Categorization: Use a CLIP-driven big model
to classify filtered objects into predefined risk tiers with-
out requiring task-specific training.

• Causal Scene Interpretation: Employ Vision Language
Models (VLMs) to generate spatiotemporally grounded
captions that explain the evolution of hazards (e.g., “A
dog crossing the street”).

II. RELATED WORK

A. Optical Flow

Optical flow characterizes the perceived motion patterns
between consecutive frames, representing the displacement
vector field induced by relative motion between the observer
and scene elements. This spatiotemporal signal provides criti-
cal cues for anticipating emerging threats in dynamic environ-
ments. Recent advancements in autonomous safety systems
have increasingly leveraged optical flow for enhanced risk
prediction and collision awareness. FlowNet 2.0 [21]estab-
lished significant improvements in both estimation accuracy
and computational efficiency, enabling real-time extraction
of dense motion vectors. Building upon this [22] integrated
optical flow with Occupancy Networks to predict the trajecto-
ries of dynamic obstacles, thus generating collision-free paths
by incorporating vehicle kinematic constraints. In a similar
vein, [23] developed a model that predicts Time to Collision
(TTC) and optical flow from monocular images, identifying
potential collision areas through feature clustering and motion
analysis. Their model uses optical flow and TTC within a 65ms
temporal window to assess collision risk. To further address
challenges such as varying illumination, Wang et al. [24] fused
monocular optical flow with stereo depth cues, successfully
reducing optical flow errors by 50% compared to previous
unsupervised methods.

B. Zero-Shot Image Classification

Recent advancements in vision-language pretraining have
transformed open-vocabulary zero-shot learning. Pioneered
by OpenAI’s CLIP [25], which aligns 400 million image-
text pairs into a unified embedding space through contrastive
learning, this approach enables semantic transfer to unseen
categories via natural language prompts. Building on this,
ALIGN [26] further enhances multi-modal alignment by train-
ing on noisy web-scale data (1.8 billion pairs), demonstrating
improved robustness in cross-modal retrieval tasks. In object
detection, VILD [27] innovatively distills knowledge from

CLIP-style classifiers into two-stage detectors like Mask R-
CNN, effectively detecting rare categories using only base-
class annotations. This highlights the possibility of open-
vocabulary detection without relying on novel-class train-
ing data. Prompt engineering has also emerged as a key
enabler for zero-shot adaptation. Methods like CoOp [28]
optimize learnable context vectors to guide pre-trained vision
language models (VLMs) toward downstream tasks, leading
to a noticeable improvement in performance across multiple
datasets. Further works like CoCoOp [18] introduced condi-
tional prompt tuning, dynamically adjusting prompts based
on image content, significantly reducing the domain gap on
unseen classes.

C. Vision-Larger Language Models

The success of Vision Transformers (ViT) [29] and large-
language Models (LLMs) has led to advances in cross-modal
learning. ViT is used to extract hierarchical image features
and then mapped into the textual embedding space of LLMs
through alignment layers. For example, LLaVA [30]shows how
aligning ViT outputs (D=1024) with LLM token dimensions
(D=4096) using linear transformation enables visual question
answering with minimal instruction tuning. Parameter-efficient
fine-tuning [31] techniques have become essential for effi-
ciently adapting models to new tasks. These include adapter-
based tuning, which uses lightweight modules to adapt models
with minimal parameter changes (e.g., VL-Adapter [32] tunes
less than 1% of the total parameters), and Q-Former mech-
anisms, like those in BLIP [33], [34], where query vectors
attend to key visual regions, speeding up convergence. These
methods can deal with many challenges, including bridging the
modality gap between ViT’s grid-based features and LLM’s se-
quential embeddings and ensuring efficient knowledge transfer
by updating only the adapter parameters, making them suitable
for tasks like autonomous hazard perception.

III. METHOD

As Fig 2,our approach begins by utilizing a priori knowl-
edge to screen potential hazardous objects based on optical
flow and depth information. These objects are then identified
and categorized through zero-shot image captioning, allowing
the model to recognize and classify hazards without requiring
task-specific training. Finally, we use a vision language model
to generate captions and categorize dangerous objects in each
frame.

A. Multi-modal Hazard Filtering

We establish a prior assumption based on the intuition that
larger and closer objects pose a greater danger. we design a
hazard scoring mechanism defined as

score =
bounding box size

dist to center
(1)

where objects with higher scores are considered more haz-
ardous. This integrated scoring system enhances the accuracy
of hazard assessment by prioritizing the highest-scoring object
as the primary threat.We employ optical flow estimation for



Fig. 2. Illustration of the proposed framework. BLIP, an advanced visual language model, is employed for image matching and captioning tasks to identify
objects, determine potential hazards, and generate descriptions. Green boxes indicate bounding boxes with track IDs within the COOOL dataset.

TABLE I
COMPARISON OF PROCESSING TIMES FOR THE LINEAR REGRESSION AND

THE SCORING MECHANISM IN DIFFERENT PROCESSING MODES ON THE
COOOL DATASET.

Method Processing Mode Single Frame
Time

Total Time

Linear Single-threaded CPU 1 ms 4,320 s
GPU Accelerated 0.01 ms 43.2 s

Scoring mechanism Single-threaded CPU 0.01 ms 43.2 s
GPU Accelerated 0.0001 ms 0.432 s

small objects and animals to capture how objects change
instantaneously between consecutive frames. In dynamic envi-
ronments, the optical flow field assists in identifying hazardous
regions within a scene by scoring motion every five frames to
assess whether the current driving state is potentially danger-
ous. Additionally, we incorporate monocular depth estimation
in low-light conditions to predict scene depth. By analyzing
variations in the depth map, we effectively distinguish moving
objects and identify potential hazards, thereby enhancing the
accuracy of hazard detection. The visualization of optical flow
estimation and depth estimation is shown in Fig 4.

B. Zero-shot Image classification

For the identified hazardous objects, we extract them using
the bounding boxes (bounding box) provided in the dataset
and perform zero-shot image classification. However, relying
solely on the bounding box may result in a loss of contex-
tual information, making classification more challenging. To
address this issue, we apply a 20% padding around the target
image, ensuring that contextual cues are incorporated into the
zero-shot model. For classification, we utilize OpenAI’s CLIP
ViT-B/16 [25] model and select the top 10 predicted categories
with the highest probabilities as the final results.

C. Image Caption

We first employed a zero-shot classification method to
process the input images, thereby identifying potentially haz-
ardous objects in the scenes. Next, we used the BLIP model to
generate detailed descriptions of the classified hazard objects.
This model leverages the strengths of both visual information
and large-language models to automatically image caption
that accurately correspond to the characteristics of the haz-
ardous objects. Meanwhile, by utilizing the frame-level label
information provided in the dataset, we precisely located the
keyframes containing the hazardous objects and conducted
scene understanding on these frames. Based on the scene
analysis results, we further examined the specific labels and
attributes of the hazardous objects to formulate more accurate
descriptions.

IV. DATASET

A. Annotation

The COOOL benchmark, entitled ”Challenge Of Out-Of-
Label” in Autonomous Driving, comprises 200 high-resolution
dashcam videos that have been meticulously annotated by
human labelers. The objective of this benchmark is to identify
objects of interest and potential roadway hazards in Figure 1 .
The range of potential hazards is extensive, including but not
limited to exotic animals (e.g., birds, houses, dogs), unusual
or unpredictable objects (e.g., plastic bags, smoke), and more
common roadway threats (e.g., cars, pedestrians).

The annotation files illustrated in support object detection
bounding boxes and follow the common object detection
annotation format, providing us with xmin, xmax, ymin, and
ymax coordinates.



Fig. 3. The above images present the visualization of optical flow estimation and depth estimation. (a) is the original frame from the dataset, (b) is the optical
flow estimation, and (c) is the depth map estimation.

TABLE II
CONSOLIDATED OBJECT DATA WITH OBJECT NAMES, ORDERED BY TRACK
ID. ATTRIBUTES ARE INTENTIONALLY LEFT AS EMPTY BRACES (“{}”) AT

THIS STAGE. THIS TABLE MERGES CHALLENGE OBJECT DATA AND
TRAFFIC SCENE DATA INTO ONE, WITH OBJECT NAMES ADDED.

Track ID bounding box (Bounding Box) Attributes Object

0 [183.62, 497.99, 211.16, 538.2] {} traffic scene
1 [387.95, 457.78, 664.29, 686.97] {} challenge
2 [861.45, 576.45, 913.67, 648.1] {} challenge
3 [1047.92, 526.23, 1065.11, 542.62] {} traffic scene
4 [1050.36, 544.48, 1058.68, 567.64] {} traffic scene
5 [52.2, 656.7, 104.45, 700.1] {} challenge

B. Evaluation metrics

The COOOL competition evaluation metrics are intended to
balance the three aspects of hazard detection. Datasets provide
systems with a list of bounding boxes and the raw video, which
enables diverse approaches to these challenges. In order to
predict which potential hazards are genuinely hazardous, the
accuracy of predictions is computed based on the maximum
between the number of ground truth hazards and the number
of predicted hazards.Let Ngt be the number of ground-truth
hazards, Npred be the number of predicted hazards, and Ncorrect
be the number of correct hazard predictions. To penalize over-
prediction, we use:

Adetection =
2Ncorrect

Ngt +Npred
. (2)

By adding the total number of hazards to the total number
of guesses, algorithms that over-predict hazards are penalized,
thus avoiding the inflation of accuracy through lucky guesses.
For hazard descriptions, a similar approach is adopted, but
here we only check whether the class label is included in
the description, which is a binary evaluation. In Hazard
Description Accuracy,For each hazard description, define the
indicator function:

di =

{
1, if hazard object will be explain,

0, otherwise.
(3)

If there are N hazards to evaluate, then the description
accuracy is:

Adescription =
1

N

N∑
i=1

di . (4)

In the context of driver reactions, accuracy is determined based
on the ground truth labels for each frame, thereby ascertaining
whether the driver has reacted to the hazard. The overall
evaluation metric is the macro-averaged accuracy of these
three measures. For Driver Reaction Accuracy Let Rt be the
ground-truth reaction label at frame t, and R̂t be the predicted
reaction label at frame t.Evaluated over T frames, the reaction
accuracy is:

Areaction =
1

T

T∑
t=1

1{R̂t = Rt} , (5)



where 1{·} is the indicator function (1 if true, 0 otherwise).
Overall Evaluation,The overall metric is the macro-average

of the three accuracies:

Aoverall =
1

3

(
Adetection +Adescription +Areaction

)
. (6)

V. RESULTS AND DISCUSSION

In the benchmark has not yet provided relevant label infor-
mation, we use Kaggle’s evaluation metrics as an indicator of
our model’s performance. As TABLE III showed that the grad-
ual integration of various information modules significantly
enhanced the overall performance. Initially, when only the
CLIP model was employed, the system achieved an accuracy
of merely 23%, indicating that relying solely on single-modal
visual feature extraction is insufficient to capture the critical
information of hazardous objects in complex driving scenes.
By adopting the BLIP model, the accuracy slightly increased
to 26%, demonstrating that BLIP possesses certain advantages
in sense understanding and image captioning. However, it’s
still hard to capture the dynamic changes of the scene or
analyze them in low-light conditions. Furthermore, when the
BLIP model was combined with the Optical Flow estimation
and scoring method, the accuracy improved to 42%, which
validates the important role of incorporating motion informa-
tion to capture dynamic changes between consecutive frames
and enhance detection performance. Ultimately, our method
further integrated depth map information to provide an in-
depth depiction of the scene’s geometric structure, elevating
the reach to 63%. These results show the advantages of a
multi-modal information fusion process in hazardous object
detection.

TABLE III
PERFORMANCE COMPARISON OF METHODS WITH COMPONENT USAGE

INDICATED BY (✓) .

Method CLIP BLIP Optical Flow depth map Score

Baseline
✓ 23%

✓ 26%
✓ ✓ 42%

Ours ✓ ✓ ✓ 63%

Furthermore, the accuracy is further enhanced to 28% by
incorporating a speed threshold, which improves predictions
of driver state changes. By introducing a scoring strategy to
evaluate the danger level of objects based on the inverse of
their bounding box size and position relative to the center,
the accuracy reaches 63%. These findings underscore the im-
portance of integrating prior knowledge and adopting precise
danger assessment methods to enhance prediction accuracy. A
visualization of this approach is provided in Fig 4.

In addition, as shown in TABLE I, the threshold-based ap-
proach is 10 times faster than linear regression. This significant
improvement enables the model to detect potential hazards and
respond more quickly, which is a key factor in ensuring the
real-time performance and safety of the autonomous driving
system.

TABLE IV
COOOL CHALLENGE BENCHMARK

# Team name Apublic
reaction Aprivate

reaction

1 Duong Anh Kiet 0.78453 0.57261
2 PiVa AI 0.68993 0.51772
3 Impish 0.63794 0.51596
4 Ours 0.63792 0.50599
5 Parisa Hatami 0.54599 0.48967
6 TeamCV 0.55705 0.44401
7 PMM UTCU 0.43161 0.44020
8 Mahdi Abbariki 0.56956 0.37568
9 Nachiket Kamod 0.43368 0.31733

10 Peace.LU 0.34695 0.31639

VI. CONCLUSION AND FUTURE WORK

This paper presents the approach we adopted in the COOOL
Autonomous Driving Challenge, which requires the automatic
detection of hazardous objects in driving scenarios without
language annotations, as well as the generation of corre-
sponding natural language descriptions. This task imposes
stringent demands on existing vision-language models. To
tackle this challenge, we propose a BLIP-based solution that
integrates prior knowledge, optical flow, and depth estimation.
Furthermore, we implement a fine-tuning strategy for large-
language models by adjusting parameters such as vertex
sampling, temperature, and competition degree. These im-
provements effectively enhance the overall performance of the
model. Ultimately, our method significantly boosts accuracy,
achieving a rate of 63%.As the TABLE IV Since the official
paper for this competition has not yet been published, a
direct comparison with other methods is not currently possible.
However, our approach has demonstrated strong performance
in experiments, indicating its competitive potential for this
task.

In the future, we aim to explore advanced models such
as LLaMA [35] and GPT-4.0 [15]. We plan to leverage
chain-of-thought prompting to enhance the model’s infer-
ence capabilities, enabling deeper semantic understanding
and logical reasoning. Additionally, we intend to extend the
model’s capabilities to comprehend video data, allowing it
to capture dynamic information and temporal relationships in
driving scenarios. These advancements will further improve
the model’s performance and interpretability, contributing to
the safe development of autonomous driving technology.
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