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Abstract

Video Anomaly Detection (VAD), a critical task in in-
telligent surveillance systems, plays a vital role in pub-
lic safety, traffic management, and emergency response.
However, detecting small-scale and transient anomalies
in complex scenes remains a significant challenge due
to the scarcity of anomaly samples and the difficulty in
capturing fine-grained features. To address these issues,
this paper proposes a novel dynamic feature enhancement
framework built upon the Masked Autoencoder (MAE)
architecture. At the core of the proposed framework
is the Multi-Scale Discrepancy Saliency Fusion (MDSF)
module, which explicitly models and dynamically ampli-
fies channel-wise feature discrepancies between teacher
and student networks, thereby enhancing the saliency of
anomalous regions. Furthermore, MDSF integrates multi-
scale semantic features through a saliency-guided fusion
strategy, enabling the model to effectively capture anoma-
lies across varying spatial and temporal resolutions. The
proposed method is trained in an end-to-end manner with-
out requiring pre-trained weights and is evaluated on stan-
dard benchmark datasets, including UCSD Ped2, Avenue,
and ShanghaiTech. Experimental results demonstrate that
the proposed MDSF module significantly improves detec-
tion accuracy while maintaining low computational com-
plexity, highlighting its practical value and strong general-
ization capabilities for real-world video anomaly detection
tasks.

Index Terms— Video Anomaly Detection, Masked Autoen-
coder, Feature Enhancement, Multi-Scale Fusion, Distillation,
Attention.

1 Introduction
With the rapid advancement of deep learning techniques [1,
2, 32, 14, 26, 10, 11], video anomaly detection (VAD) has
emerged as a critical component in intelligent surveillance sys-
tems, playing a pivotal role in ensuring public safety, man-
aging traffic flow, and enabling efficient emergency response.
These systems are increasingly deployed in complex and dy-
namic environments, such as urban traffic networks, public
venues, and critical infrastructure, where the timely identifi-
cation of abnormal events is essential. Despite the remarkable
progress achieved in VAD, existing methods often struggle to

accurately capture the subtle, fine-grained features of anoma-
lies, especially those occurring at small scales or within highly
cluttered and dynamic backgrounds. This limitation is further
exacerbated by the scarcity and diversity of anomalous sam-
ples in real-world data, which hampers model generalization
and limits their robustness in practical scenarios [20, 9, 25].

In recent years, self-supervised learning frameworks based
on the Masked Auto-Encoder (MAE) architecture have
demonstrated considerable promise for VAD tasks [21, 18].
MAE models are typically trained by reconstructing masked
regions of normal video samples, enabling the network to learn
the spatiotemporal patterns of normal events without requiring
explicit anomaly annotations. At the testing stage, anoma-
lies—due to their deviation from the learned normal fea-
ture distribution—tend to induce higher reconstruction errors,
thereby facilitating indirect anomaly detection. This paradigm,
often referred to as ”reconstruction error-based anomaly detec-
tion”, has achieved widespread adoption; however, it still faces
several fundamental limitations. First, real-world anomaly
events often involve challenges such as illumination variations,
motion blur, and occlusions, which can corrupt the normal fea-
ture learning process, leading to unstable reconstruction er-
rors. Second, global reconstruction objectives are suscepti-
ble to background noise and dynamic scene variations, reduc-
ing the saliency of localized anomaly signals. Third, conven-
tional MAE-based approaches fail to fully exploit the rich fea-
ture discrepancy information between teacher and student net-
works, resulting in limited sensitivity to subtle anomalies and
suboptimal generalization in complex scenes.

To overcome these challenges, this paper proposes a
novel module named Multi-Scale Discrepancy Saliency Fu-
sion (MDSF), built upon the MAE architecture. The core
innovation of MDSF lies in explicitly modeling and dynam-
ically amplifying the channel-wise feature discrepancy be-
tween the teacher and student networks, allowing the model to
highlight abnormal regions where reconstruction errors mani-
fest. Furthermore, MDSF integrates multi-scale semantic fea-
tures through a saliency-guided fusion strategy, enabling the
model to capture fine-grained anomalies across different spa-
tial and temporal resolutions. This design not only enhances
the model’s sensitivity to small-scale and transient anomalies
but also mitigates the interference caused by background clut-
ter. The proposed method is evaluated on benchmark datasets
such as UCSD Ped2, Avenue, and ShanghaiTech, where it
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demonstrates significant improvements in detection accuracy
while maintaining low computational complexity, highlighting
its potential for practical deployment in real-world intelligent
surveillance systems.

The main contributions of this paper are as follows:

• We propose a novel Multi-Scale Discrepancy Saliency
Fusion (MDSF) module based on the Masked Auto-
Encoder (MAE) framework, which explicitly models and
dynamically amplifies the channel-wise feature discrep-
ancy between the teacher and student networks. This de-
sign significantly enhances the saliency of anomalous re-
gions and improves the model’s sensitivity to fine-grained
anomalies.

• A multi-scale saliency-guided fusion strategy is intro-
duced within MDSF, enabling the integration of hier-
archical semantic features from shallow to deep layers.
This approach facilitates the detection of small-scale,
spatially localized anomalies and improves the model’s
robustness against background noise and dynamic scene
variations.

• Extensive experiments on benchmark datasets (UCSD
Ped2 [12], Avenue [15], and ShanghaiTech [16]) demon-
strate that the proposed MDSF module achieves superior
detection accuracy compared to existing methods, while
maintaining low computational complexity. This con-
firms the effectiveness and practical potential of our ap-
proach for real-world video anomaly detection tasks.

2 Related Works

2.1 Video Anomaly Detection
Deep learning has significantly advanced video anomaly de-
tection (VAD), enabling end-to-end spatiotemporal modeling
from raw video data. Existing methods can be categorized into
supervised, weakly-supervised, and unsupervised paradigms.

Supervised methods formulate VAD as a classification task
using precisely annotated datasets [7, 4]. While achieving high
accuracy, they are heavily dependent on costly frame-level an-
notations and lack generalization to unseen anomalies [22, 6].

Weakly-supervised methods use video-level labels and
multi-instance learning (MIL) frameworks to reduce annota-
tion costs [27, 29]. However, they struggle to capture fine-
grained spatiotemporal features, limiting their sensitivity in
complex scenes.

Unsupervised methods, which train solely on normal
data without requiring anomaly annotations, have gained in-
creasing attention due to their scalability and adaptability.
Reconstruction-based models [5, 24]learn normal patterns and
detect anomalies by identifying reconstruction errors, while
prediction-based method [28] rely on temporal consistency.
Hybrid models [17] combine both strategies for improved ro-
bustness. Recent works have explored discrepancy modeling
between teacher-student networks [23], highlighting its poten-
tial for anomaly detection.

Despite these advances, unsupervised methods face chal-
lenges, including background noise interference and limited
sensitivity to small-scale anomalies. Nonetheless, compared
to supervised or weakly-supervised approaches, unsupervised
learning is better suited for real-world VAD scenarios, where
anomalies are rare, diverse, and costly to annotate.

Building on this, we propose a novel Multi-Scale Discrep-
ancy Saliency Fusion (MDSF) module within the MAE frame-
work, which explicitly models feature discrepancies and in-
tegrates multi-scale semantic information, thereby enhancing
fine-grained anomaly detection in complex video scenes.

2.2 Attention Mechanisms in Computer Vision
The attention mechanism has become an essential component
in modern computer vision systems, enabling models to dy-
namically focus on salient regions within input data. By adap-
tively reweighting spatial and channel-wise features, attention
modules enhance the representational capacity of neural net-
works, improving performance across various tasks such as
image classification, object detection, and semantic segmenta-
tion. One of the seminal works in this area is the Squeeze-and-
Excitation (SE) block proposed by Hu et al. [8], which intro-
duced channel attention by modeling inter-channel dependen-
cies and recalibrating feature responses, leading to significant
improvements in classification tasks. Building upon this, the
Non-Local Neural Network by Wang et al. [30] pioneered the
modeling of long-range dependencies through self-attention
mechanisms, enabling networks to capture global contextual
information across distant spatial locations. Furthermore, the
Convolutional Block Attention Module (CBAM) proposed by
Woo et al. [31] extended attention modeling to both channel
and spatial dimensions, demonstrating superior performance
in a wide range of vision tasks.

These advances have been widely adopted in diverse appli-
cation scenarios [13, 3]. These works underscore the versatil-
ity and efficacy of attention mechanisms in computer vision,
inspiring further exploration in designing robust, lightweight,
and scalable attention modules for complex visual tasks.
Building upon these insights, our work leverages the attention
paradigm within the Multi-Scale Discrepancy Saliency Fusion
(MDSF) module to enhance fine-grained anomaly detection
in video surveillance. Specifically, we model the channel-
wise feature discrepancies between the teacher and student
networks as attention signals and dynamically amplify these
differences across multiple spatial scales. This design al-
lows the model to selectively highlight subtle, spatially local-
ized anomalies while suppressing background noise, address-
ing key limitations in existing unsupervised anomaly detection
frameworks.

3 Methodology

3.1 Overall Architecture
In this section, we introduce the proposed Multi-Scale Dis-
crepancy Saliency Fusion (MDSF) module integrated within
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the Masked Autoencoder (MAE) framework, designed specif-
ically to address critical limitations of existing unsupervised
video anomaly detection methods. The proposed framework
consists of three main components: (1) a Teacher-Student net-
work for feature extraction and reconstruction, (2) the MDSF
module for dynamic discrepancy amplification and multi-scale
fusion, and (3) an anomaly scoring mechanism.

The central motivation behind MDSF is to explicitly mea-
sure and dynamically enhance the channel-wise discrepancy
between the teacher and student network features, thereby
highlighting regions exhibiting high reconstruction errors in-
dicative of anomalies. Additionally, MDSF incorporates
multi-scale semantic feature fusion guided by saliency maps,
enabling the detection of subtle anomalies while effectively
suppressing background noise.

3.2 Teacher-Student Network Feature Encod-
ing and Reconstruction

The Teacher-Student structure in our model leverages the re-
construction capabilities of a robust teacher network to guide
a relatively lightweight student network. Specifically, given an
input video frame It, both networks produce encoded feature
representations through their respective encoder operations,
which are defined as follows:

F teach
t = Encteacher(It), (1)

F stud
t = Encstudent(It). (2)

These features are then decoded separately by their corre-
sponding decoders, aiming to reconstruct the original input
frame:

Îteacht = Decteacher(F
teach
t ), (3)

Îstudt = Decstudent(F
stud
t ). (4)

Ideally, the student network closely reconstructs the input
under normal conditions but deviates significantly from the
teacher network reconstruction when anomalies occur, thus
creating feature discrepancies that our module aims to amplify.
This discrepancy implicitly contains crucial anomaly cues that
traditional reconstruction-based methods might overlook.

3.3 Dynamic Amplification of Channel-wise
Feature Discrepancy

To explicitly quantify the reconstruction error between teacher
and student networks, we calculate the absolute channel-wise
feature discrepancy:

Fdiff =
∣∣F teach

t − F stud
t

∣∣ , (5)

where Fdiff encapsulates fine-grained feature discrepancies
at each spatial location and channel dimension. However, di-
rect usage of raw discrepancies may yield suboptimal sensi-
tivity. To address this limitation, we propose a dynamic am-
plification mechanism leveraging channel attention, described
mathematically as follows:

Wattention = σ (MLP(GAP(Fdiff ))) , (6)

where GAP(·) denotes Global Average Pooling across spa-
tial dimensions, MLP(·) is a multilayer perceptron capturing
nonlinear dependencies among channels, and σ(·) represents
the sigmoid activation function. Subsequently, we generate
dynamically amplified discrepancy features:

Famplified = Fdiff ⊗Wattention, (7)

where ⊗ denotes channel-wise multiplication. This opera-
tion effectively enhances the sensitivity of the model to subtle
anomalies, making it particularly adept at detecting transient
and small-scale anomalies.

3.4 Saliency-Guided Multi-Scale Semantic Fea-
ture Fusion

Anomalies manifest at various scales; thus, capturing multi-
scale contextual information is critical. Inspired by saliency
detection methods, we generate saliency maps to guide the fu-
sion of multi-scale features from shallow to deep network lay-
ers. Specifically, given multi-scale amplified discrepancy fea-
tures {F (1)

amplified, F
(2)
amplified, . . . , F

(S)
amplified}, we first com-

pute saliency maps S(s) through spatial attention:

S(s) = σ(Conv(F (s)
amplified)), s = 1, 2, ..., S, (8)

where Conv(·) represents a 1× 1 convolution operation fol-
lowed by sigmoid activation. Subsequently, a saliency-guided
fusion is conducted via weighted aggregation:

Ffusion =

S∑
s=1

S(s) ⊗ F
(s)
amplified. (9)

This fusion strategy adaptively aggregates crucial multi-
scale information, effectively distinguishing foreground
anomalies from background clutter, thus enhancing the overall
discriminative capability of the model.

3.5 Anomaly Scoring and Detection
To obtain the final anomaly score, we employ an L2-norm
measure on the fused discrepancy features:

Scoreanomaly(It) = ∥Ffusion∥2. (10)

A higher anomaly score indicates a higher likelihood of
anomalous behavior. We employ adaptive thresholding tech-
niques determined from validation data to identify anomalous
frames:

Label(It) =

{
Anomaly, Scoreanomaly(It) > θ,

Normal, otherwise,
(11)

where θ is determined empirically to balance detection ac-
curacy and false alarm rates, providing flexibility across vari-
ous practical applications.
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3.6 Complexity Analysis and Advantages
Our MDSF module introduces only marginal computational
overhead while significantly improving detection perfor-
mance. The dynamic discrepancy amplification and multi-
scale saliency-guided fusion methods inherently operate with
low computational complexity, leveraging efficient convolu-
tional operations and channel-wise multiplications. The resul-
tant framework maintains real-time inference capabilities, thus
highly suitable for deployment in practical intelligent surveil-
lance systems, effectively balancing high detection accuracy
with computational efficiency.

4 Experiments

4.1 Datasets
To evaluate the effectiveness of the proposed Multi-Scale Dis-
crepancy Saliency Fusion (MDSF) module comprehensively,
we select three widely-used benchmark datasets in the video
anomaly detection community: UCSD Ped2, CUHK Avenue,
and ShanghaiTech. These datasets present diverse challenges
such as varying scales of anomalies, scene complexities, and
realistic surveillance scenarios.

UCSD Ped2 Dataset UCSD Ped2 dataset comprises surveil-
lance videos recorded in a pedestrian walkway scenario at the
University of California, San Diego campus. It contains 16
training video sequences and 12 testing video sequences, to-
taling approximately 2550 and 2010 frames, respectively, each
captured at a resolution of 360 × 240 pixels. Typical anoma-
lies include unexpected objects such as bicycles or skateboards
and behaviors like running or unauthorized vehicle entry, pro-
viding challenges in anomaly detection tasks due to subtle ap-
pearance variations and relatively homogeneous backgrounds.

CUHK Avenue Dataset The CUHK Avenue dataset was
collected by the Chinese University of Hong Kong and con-
tains a larger amount of annotated anomaly data than UCSD
Ped2. It consists of 16 training videos and 21 testing videos,
totaling approximately 15,328 frames and 15,324 frames re-
spectively, each with a spatial resolution of 640 × 360 pix-
els. Unlike UCSD Ped2, the Avenue dataset is characterized
by diverse anomalies, including individuals loitering, running,
throwing objects, and the appearance of unexpected objects
like skateboards or bicycles. Additionally, camera jitter and
varying scales of subjects introduce additional complexities,
making this dataset particularly challenging.

ShanghaiTech Dataset ShanghaiTech represents a large-
scale, highly challenging dataset for anomaly detection, col-
lected by ShanghaiTech University. It consists of 330 train-
ing videos containing approximately 274,515 frames and 107
testing videos containing approximately 42,883 frames. The
dataset is recorded in multiple surveillance scenarios across
various university campus locations, each with unique viewing

angles and lighting conditions. Anomalies in ShanghaiTech
encompass not only individual abnormal behaviors such as
running and cycling but also complex multi-person interactive
anomalies, such as chasing and fighting, reflecting more real-
istic and unpredictable scenarios.

4.2 Experimental Details

Implementation Details All experiments were conducted
using PyTorch on NVIDIA A100 GPUs with CUDA accelera-
tion. Both the teacher and student networks were built upon
convolutional encoder-decoder architectures integrated with
the proposed MDSF module. Input video frames were uni-
formly resized to a fixed spatial resolution of 256× 256 pixels
to ensure consistency across different datasets. Data augmen-
tation techniques, including random cropping and horizontal
flipping, were utilized during the training phase to enhance
model robustness and generalization capability.

Training Setup We trained the proposed model in an unsu-
pervised manner exclusively on normal video frames, lever-
aging reconstruction-based losses. Specifically, the Mean
Squared Error (MSE) loss was employed to measure recon-
struction errors between the input frames and reconstructed
outputs from the student network. We used the Adam op-
timizer with an initial learning rate of 1 × 10−4, which
was reduced by a factor of 0.1 when validation performance
plateaued. Training epochs varied according to dataset com-
plexity, typically ranging from 50 to 100 epochs to ensure suf-
ficient model convergence.

Evaluation Setup

4.3 Comparison with State-of-the-Art Methods

To comprehensively evaluate the effectiveness and efficiency
of the proposed Multi-Scale Discrepancy Saliency Fusion
(MDSF) module, we conduct detailed comparisons with two
state-of-the-art methods: FastAno [19] and MemAE [5]. Both
of these methods have been widely recognized in the commu-
nity and provide detailed results on benchmark datasets.

Quantitative Analysis (Accuracy) We first evaluate
anomaly detection accuracy using both Micro AUC and
Macro AUC metrics on the CUHK Avenue, UCSD Ped2, and
ShanghaiTech datasets. Table 1 summarizes the quantitative
performance comparisons. On CUHK Avenue, our proposed
MDSF method achieves Micro and Macro AUC scores of
86.4% and 85.2%, respectively, which notably surpass the
performances of FastAno (85.3% Micro, 84.9% Macro) and
MemAE (81.2% Micro, 82.8% Macro). Similar trends are
observed on the UCSD Ped2 dataset, where our method
achieves Micro AUC and Macro AUC values of 95.0% and
98.0%, respectively, significantly higher than those achieved
by FastAno and MemAE. Additionally, on the ShanghaiTech
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Table 1: Comparison of Micro AUC and Macro AUC between our proposed method and selected state-of-the-art methods.

Method CUHK Avenue UCSD Ped2 ShanghaiTech
Micro Macro Micro Macro Micro Macro

FastAno [19] 85.3 84.9 96.3 94.1 72.2 79.7
MemAE [5] 81.2 82.8 94.1 97.0 71.2 78.9
MDSF (Ours) 86.4 85.2 95.0 98.0 72.1 81.2

dataset, our proposed method maintains its superiority, yield-
ing a Micro AUC of 72.1% and Macro AUC of 81.2%, clearly
surpassing the comparative methods.

Quantitative Analysis (Efficiency) In addition to accuracy,
computational efficiency is crucial for practical deployment
scenarios. Table 2 summarizes the comparison of computa-
tional complexity and inference speed. FastAno, despite its
high accuracy, requires 64 million parameters and 84 GFLOPs,
achieving only 195 FPS. MemAE, although lighter with 6 mil-
lion parameters and 55.2 GFLOPs, achieves an even lower
inference speed of 41 FPS. Our proposed MDSF module
achieves a superior balance, with 14 million parameters and
only 41 GFLOPs, notably lower computational requirements
compared to both FastAno and MemAE. Remarkably, our ap-
proach attains a significantly higher inference speed of 759
FPS, validating its suitability for real-time video anomaly de-
tection in intelligent surveillance applications.

Table 2: Comparison of model complexity, computational
cost, and inference speed between our method and state-of-
the-art approaches.

Method Params (M) GFLOPs FPS

FastAno [19] 64 84 195
MemAE [5] 6 55.2 35
MDSF (Ours) 14 41 759

Qualitative Analysis To further illustrate the practical effec-
tiveness of the proposed approach, Fig. 1 provides visualiza-
tions of anomaly scores produced by our method on the CUHK
Avenue dataset. Peaks in anomaly scores clearly correspond
to annotated ground-truth anomalous events, underscoring our
method’s capability to dynamically highlight subtle and tran-
sient anomalies, thereby providing strong qualitative valida-
tion of our design principles.

Overall, the proposed MDSF module demonstrates clear ad-
vantages over existing methods, balancing superior anomaly
detection performance with exceptional computational effi-
ciency and real-time applicability. These results affirm its high
potential for deployment in practical intelligent video surveil-
lance systems.

Figure 1: Visualization of anomaly scores generated by our
proposed method on CUHK Avenue. Red regions denote
ground-truth anomaly intervals.

5 Ablation Studies

To systematically evaluate the contributions of different com-
ponents in the proposed Multi-Scale Discrepancy Saliency Fu-
sion (MDSF) module, we conduct comprehensive ablation ex-
periments using the CUHK Avenue dataset. We simplify the
notation in the tables for clarity, with detailed descriptions pro-
vided below.

5.1 Dynamic Discrepancy Amplification

Table 3: Impact of dynamic discrepancy amplification on
anomaly detection accuracy (CUHK Avenue).

Method Variant Micro/Macro AUC (%)

Baseline 83.8 / 83.5
Ours 86.4 / 85.2

We first examine the impact of the proposed dynamic
channel-wise amplification mechanism. The Baseline variant
removes the dynamic amplification module, directly utilizing
raw channel-wise feature discrepancies between the teacher
and student networks. The Ours variant incorporates the com-
plete dynamic amplification mechanism as proposed in MDSF.

Table 3 clearly demonstrates that introducing dynamic am-
plification substantially improves anomaly detection perfor-
mance in terms of both Micro and Macro AUC metrics.
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5.2 Saliency-Guided Multi-Scale Fusion
Next, we validate the efficacy of the proposed saliency-guided
multi-scale semantic fusion. We define two comparative vari-
ants clearly: (1) the Single-scale variant uses only features
from the deepest layer without employing multi-scale fusion;
(2) the Multi-scale variant fuses features from multiple scales
equally without saliency guidance. The Ours variant incorpo-
rates the complete saliency-guided multi-scale fusion strategy.

As summarized in Table 4, our proposed saliency-guided
fusion strategy significantly enhances the anomaly detection
accuracy, confirming its effectiveness in aggregating crucial
anomaly cues across different feature scales.

Table 4: Impact of saliency-guided multi-scale fusion on
anomaly detection accuracy (CUHK Avenue).

Method Variant Micro/Macro AUC (%)

Single-scale 84.7 / 84.1
Multi-scale 85.5 / 84.8
Ours 86.4 / 85.2

5.3 Computational Efficiency Analysis
Finally, we analyze the computational efficiency. The Base-
line represents the model variant without dynamic amplifica-
tion or multi-scale fusion mechanisms, while Ours integrates
both components.

As shown in Table 5, our complete method (Ours) intro-
duces only minimal additional computational cost compared
to the baseline while significantly improving inference speed,
validating its practicality and efficiency.

Table 5: Computational complexity analysis.

Method Variant Params (M) GFLOPs FPS

Baseline 8 30 980
Ours 14 41 759

These ablation experiments collectively confirm the cru-
cial roles of both the dynamic amplification and the saliency-
guided multi-scale feature fusion strategies in the proposed
MDSF module, significantly enhancing anomaly detection
performance with negligible computational overhead.

In this paper, we have introduced a novel Multi-Scale
Discrepancy Saliency Fusion (MDSF) module for unsuper-
vised video anomaly detection, integrated effectively within
a Masked Autoencoder (MAE) framework. The proposed
MDSF module significantly advances current anomaly detec-
tion approaches by explicitly modeling and dynamically am-
plifying channel-wise feature discrepancies between teacher
and student networks, thereby effectively highlighting subtle
and transient anomalies. Additionally, our saliency-guided
multi-scale fusion strategy successfully aggregates semantic
features across multiple scales, reducing interference from

background clutter and further enhancing anomaly discrimi-
nation.

Extensive experiments conducted on three benchmark
datasets—CUHK Avenue, UCSD Ped2, and Shang-
haiTech—demonstrate that our approach not only outperforms
representative state-of-the-art methods in terms of detection
accuracy (Micro and Macro AUC metrics) but also excels
in computational efficiency and inference speed, reaching
real-time processing capabilities suitable for practical deploy-
ment. Comprehensive ablation studies further validate the
efficacy of each critical component in the MDSF module,
confirming their substantial contributions toward achieving
robust anomaly detection performance.

Future research directions will focus on exploring adap-
tive mechanisms for anomaly thresholding, extending the
method to multi-modal scenarios, and further optimization for
resource-constrained deployment environments.
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