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Abstract

Human Activity Recognition (HAR) using wearable
sensor data has become a central task in mobile comput-
ing, healthcare, and human-computer interaction. Despite
the success of traditional deep learning models such as
CNNs and RNNs, they often struggle to capture long-
range temporal dependencies and contextual relevance
across multiple sensor channels. To address these limi-
tations, we propose SETransformer, a hybrid deep neu-
ral architecture that combines Transformer-based tempo-
ral modeling with channel-wise squeeze-and-excitation
(SE) attention and a learnable temporal attention pooling
mechanism. The model takes raw triaxial accelerometer
data as input and leverages global self-attention to cap-
ture activity-specific motion dynamics over extended time
windows, while adaptively emphasizing informative sen-
sor channels and critical time steps.

We evaluate SETransformer on the WISDM dataset and
demonstrate that it significantly outperforms conventional
models including LSTM, GRU, BiLSTM, and CNN base-
lines. The proposed model achieves a validation accuracy
of 84.68% and a macro F1-score of 84.64%, surpassing
all baseline architectures by a notable margin. Our re-
sults show that SETransformer is a competitive and in-
terpretable solution for real-world HAR tasks, with strong
potential for deployment in mobile and ubiquitous sensing
applications.

Index Terms— Human Activity Recognition (HAR), Wear-
able Sensors, Transformer Networks, Time-Series Classifica-
tion, Squeeze-and-Excitation (SE), Temporal Attention.

1 Introduction
Human Activity Recognition (HAR) from wearable sensor
data has emerged as a critical research area in sports[10,
1], healthcare[7], elderly care[23] and intelligent human-
computer interaction[19, 17, 16]. By automatically identifying
physical activities such as walking, sitting, running, or ascend-
ing stairs using motion signals from devices like smartphones

and smartwatches, HAR systems enable a wide range of real-
world applications including fitness monitoring[3, 4], elderly
fall detection[2, 9] and context-aware user interfaces[20].

Traditionally, HAR systems have relied on hand-crafted sta-
tistical or frequency-domain features, followed by classical
machine learning algorithms such as support vector machines
or decision trees. However, these approaches often require
domain expertise for feature engineering and lack scalability
across datasets or devices[13]. In recent years, deep learning
models, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have become the domi-
nant paradigm, offering automated feature extraction and tem-
poral modeling capabilities[21, 33]. CNNs excel at captur-
ing short-range spatial patterns from raw signals, while RNNs
such as LSTM and GRU are widely used for modeling sequen-
tial dependencies.

Despite their success, these models suffer from several lim-
itations. CNNs are inherently limited by fixed receptive fields
and are not well suited for modeling long-term dependen-
cies across extended time windows. RNNs, although capa-
ble of processing sequences, are prone to vanishing gradients,
and their sequential nature restricts parallelization and efficient
long-range modeling. Moreover, both CNNs and RNNs typi-
cally use static pooling or flattening operations to summarize
temporal information, which can discard task-relevant time
steps. Additionally, existing models often treat all sensor chan-
nels equally, ignoring the fact that different channels (e.g., ver-
tical vs. lateral acceleration) may carry unequal relevance for
different activities.

To overcome these challenges, we propose SETransformer,
a novel deep learning architecture designed for multivari-
ate time-series classification in HAR. Our model leverages a
Transformer-based encoder to model global temporal depen-
dencies, a squeeze-and-excitation (SE) module to perform dy-
namic channel-wise attention, and a temporal attention pool-
ing mechanism that learns to aggregate the most informative
time steps. Together, these components allow the model to
capture both long-range and fine-grained patterns, while se-
lectively focusing on the most relevant temporal and spatial
features.
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We evaluate SETransformer on the WISDM dataset, a
benchmark for smartphone-based HAR[28]. Experimental re-
sults show that our method significantly outperforms baseline
models including LSTM, GRU, BiLSTM, and CNN, achieving
state-of-the-art performance in terms of accuracy and macro
F1-score. Our model also demonstrates stable convergence
and interpretable attention behavior. These findings suggest
that combining global self-attention with adaptive feature se-
lection mechanisms yields robust and scalable HAR solutions
suitable for real-world deployment.

In summary, our main contributions are as follows:

• We introduce SETransformer, a hybrid architecture that
integrates transformer-based temporal modeling with
channel-wise and temporal attention mechanisms tailored
for HAR.

• We propose a fully end-to-end training pipeline with
z-score normalization and attention-based pooling, en-
abling the model to focus on the most discriminative fea-
tures in both time and channel dimensions.

• We conduct extensive experiments and ablation studies
on the WISDM dataset, demonstrating superior perfor-
mance over established deep learning baselines.

2 Related Works

2.1 Human Activity Recognition with Tradi-
tional Methods

Human Activity Recognition (HAR) using wearable sensors
has been studied extensively over the past decade. Early
approaches typically relied on hand-crafted statistical or
frequency-domain features extracted from sliding windows
of sensor data. These features were then fed into classi-
cal machine learning models such as Support Vector Ma-
chines (SVMs), Decision Trees, and k-Nearest Neighbors (k-
NN) [5]. While these methods achieved acceptable perfor-
mance on small, clean datasets, they often failed to general-
ize well across users and devices, requiring significant domain
expertise for effective feature engineering. Recently, Zhang et
al. [32] demonstrated a related data-driven approach applied
to naturalistic human behavior analysis in bipolar disorder, in-
troducing interpretable action segmentation and dynamic be-
havioral metrics. Their work illustrated how advanced com-
putational approaches can surpass traditional psychiatric and
ethological measures, highlighting opportunities to similarly
enhance traditional HAR techniques through data-driven mod-
eling and interpretability.

2.2 Deep Learning for HAR
To overcome the limitations of feature engineering, deep
learning-based methods have been widely adopted in HAR
tasks. Convolutional Neural Networks (CNNs) have been em-
ployed to capture local spatial and temporal patterns in sensor

signals [26]. Recurrent Neural Networks (RNNs), especially
Long Short-Term Memory (LSTM) networks, have been used
to model sequential dependencies in time-series data [18]. Hy-
brid models combining CNNs and LSTMs [22] have shown
improved performance by leveraging both spatial and tempo-
ral structures.

Despite their success, CNNs are limited by local receptive
fields, and RNNs are difficult to parallelize due to their se-
quential nature. Moreover, both architectures often struggle to
capture long-range dependencies effectively.

2.3 Transformer Models in Time Series Analy-
sis

Inspired by their success in natural language processing,
Transformer-based models have recently been adapted for
time-series classification tasks, including HAR [14]. Trans-
formers employ self-attention mechanisms to model global de-
pendencies and allow for highly parallelizable training. How-
ever, applying vanilla Transformers to multivariate sensor data
may result in poor generalization due to the absence of induc-
tive biases inherent in sensor signals (e.g., temporal continuity,
sensor-specific structure).

Several works have explored modifications of Transformer
architectures to better suit time-series data. For example,
TimeSformer [6] and Perceiver [12] introduce attention over
spatial-temporal axes. Unified transformer-based architectures
have also demonstrated success in multimodal tasks such as
document understanding, where a single model handles de-
tection, recognition, and semantic interpretation in a unified
framework [8]. These advances reflect the broader applicabil-
ity of attention-based designs for structured, multi-component
data modeling. However, these models are computationally
expensive and often require large datasets for effective train-
ing. Transformers have also been applied to structured spa-
tiotemporal generation tasks, such as traffic scene modeling in
autonomous driving [31], further highlighting their versatility
in capturing long-range dependencies across diverse domains.
Similar advances have also been observed in the domain of
instructional video understanding, where temporal attention
mechanisms are used for aligning visual prompts and answer
segments [15].

2.4 Attention Mechanisms in HAR

Attention mechanisms have also been employed explicitly in
HAR models to improve interpretability and performance. For
instance, temporal attention modules have been used to dy-
namically weight the importance of time steps [24], while
channel attention mechanisms such as Squeeze-and-Excitation
(SE) networks [11] have been applied to recalibrate feature
maps based on sensor channel relevance. Beyond traditional
accelerometer-based HAR, recent work has demonstrated the
effectiveness of temporal modeling in physiological signal
recognition tasks such as fine-grained heartbeat waveform
monitoring using RFID and latent diffusion models [25]. This
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highlights the growing applicability of advanced attention-
based architectures across diverse sensor modalities.

2.5 Our Contribution
In this work, we build upon these recent advances by design-
ing a Transformer-based model tailored to HAR. We integrate
a Squeeze-and-Excitation module to model inter-channel rela-
tionships and a temporal attention mechanism to highlight in-
formative segments of the sequence. Our model, SETRANS-
FORMER, combines the benefits of global temporal model-
ing with domain-specific inductive biases, achieving improved
performance on standard HAR benchmarks.

3 Methodology

3.1 Dataset and Preprocessing
We evaluate our proposed model on the WISDM (WISDM
Smartphone and Smartwatch Activity and Biometrics) dataset,
a widely adopted benchmark for human activity recognition
using mobile sensor data. The dataset comprises triaxial ac-
celerometer recordings collected from 51 subjects, each of
whom was asked to perform 18 tasks for 3 minutes each. Dur-
ing data collection, each subject wore a smartwatch on their
dominant hand and carried a smartphone in their pocket. The
dataset includes a timestamp, a user identifier, a class label,
and acceleration and gyrocope values along the x, y, and z
axes. The sampling rate is approximately 20 Hz, and the data
is stored in semi-structured text files, with each line represent-
ing a single sensor reading.

To ensure a consistent and clean dataset for supervised
learning, we begin by filtering out malformed records. Specif-
ically, only lines that are properly terminated with a semicolon
and contain exactly 18 comma-separated fields are retained.
These fields are parsed into structured columns, including the
user ID, activity label, timestamp, and three-axis acceleration
measurements. We discard any incomplete or corrupted en-
tries and ensure that all numerical fields are correctly cast to
their appropriate data types. To standardize activity labels, we
remove any leading or trailing whitespace and encode them as
integers using the scikit-learn LabelEncoder.

In order to model temporal patterns effectively, we segment
the continuous data stream into fixed-length sliding windows.
Each window consists of 200 consecutive time steps, corre-
sponding to roughly 10 seconds of sensor data, and the win-
dows are generated with a stride of 100 to allow 50% over-
lap between adjacent segments. To maintain label consistency
within each sample, we retain only those windows in which all
200 time steps share the same activity label. This results in a
set of supervised input-output pairs, where each input sample
is a matrix of shape

X ∈ R200×3

representing a window of triaxial acceleration values, and
each target is a single activity class label.

Prior to feeding the data into the neural network, we per-
form feature normalization to standardize the input distribu-
tion. Each axis (x, y, z) is normalized independently using
z-score normalization, computed over the entire training set.
Prior to model input, the data is standardized using z-score
normalization applied independently to each axis:

x′ =
x− µ

σ

where µ and σ are computed globally over the entire train-
ing set. This ensures that all sensor channels contribute
equally during training and accelerates convergence by mit-
igating scale disparities. That is, for each axis, we subtract
the global mean and divide by the standard deviation, ensur-
ing that each channel has zero mean and unit variance. This
step improves numerical stability and accelerates convergence
during model training by eliminating scale disparities among
input features.

Finally, the fully preprocessed dataset is split into training
and validation sets using an 80/20 stratified split to preserve
class balance across partitions. The result is a structured, nor-
malized dataset suitable for temporal deep learning, with con-
sistent window lengths, standardized channel inputs, and clear
supervision targets. This preprocessing pipeline enables re-
producible experimentation and aligns with best practices in
wearable sensor-based activity recognition research.

We propose SETransformer, a hybrid deep neural architec-
ture that integrates transformer-based temporal encoding with
lightweight channel and temporal attention modules, specif-
ically designed for multivariate time-series classification in
human activity recognition (HAR). The model aims to ad-
dress key challenges in wearable-sensor HAR tasks, namely:
(1) modeling long-range temporal dependencies, (2) capturing
discriminative inter-channel dynamics, and (3) adaptively ag-
gregating sequential signals of varying importance. This sec-
tion presents a comprehensive description of each component,
including design rationale, architectural formulation, and com-
putational flow.

3.2 Problem Formulation

Given a windowed multivariate time series X ∈ RT×C , where
T is the number of time steps and C is the number of input
channels (in our case, C = 3 for x, y, z acceleration), the task
is to predict a single activity label y ∈ {1, . . . ,K}, with K
being the number of activity classes.

The data is structured as uniformly sampled and pre-
segmented windows of length T = 200, each labeled accord-
ing to the dominant activity within the window. Our model
learns a function f : RT×C → RK , where the output is a
categorical distribution over classes.

3.3 Input Projection
The first stage of SETRANSFORMER performs a linear
transformation to embed raw sensor signals into a higher-
dimensional space suitable for subsequent attention mecha-
nisms:

3



Journal of Emerging Applied Artificial Intelligence (JEAAI)

H0 = XWproj + bproj, Wproj ∈ RC×d

where d is the model dimension (typically 128). The projec-
tion enables richer representation learning over raw accelera-
tion features, and aligns input shape with transformer require-
ments.

3.4 Temporal Encoding via Transformer Lay-
ers

We adopt a standard Transformer encoder to capture global
temporal interactions. Each encoder layer consists of multi-
head self-attention and a position-wise feed-forward network
(FFN), wrapped with residual connections and layer normal-
ization:

SelfAttn(Q,K,V) = softmax
(
QK⊤
√
dk

)
V

Hℓ = LayerNorm (Hℓ−1 + SelfAttn(Hℓ−1))

Hℓ = LayerNorm (Hℓ + FFN(Hℓ))

We stack two such encoder layers. Unlike in NLP, we omit
learnable positional encodings, relying on the structure of sen-
sor data and sequential convolution of windows to retain im-
plicit temporal order.

3.5 Channel-Wise Attention: Squeeze-and-
Excitation Module

Human motions often exhibit dominant directional patterns
depending on the activity (e.g., walking involves rhythmic os-
cillations in the vertical axis). To exploit such patterns, we in-
troduce a Squeeze-and-Excitation (SE) module that performs
dynamic reweighting of channel responses.

First, we aggregate temporal information per channel via
global average pooling:

zc =
1

T

T∑
t=1

H2[t, c]

Then, we compute channel-wise gating coefficients:

s = σ (W2 · ReLU(W1 · z)) , s ∈ Rd

where W1 ∈ Rd× d
r and W2 ∈ R d

r×d, with reduction ratio
r = 16. The recalibrated features are obtained as:

HSE[t, c] = H2[t, c] · sc
This operation allows the model to selectively emphasize or

suppress sensor channels conditioned on the global temporal
context.

4.5 Temporal Aggregation via Attention Pooling
Traditional HAR models often rely on global average or

max pooling over time to summarize temporal features. How-
ever, such operations assume equal relevance of all time steps,

which is inappropriate for activities with transient or non-
stationary phases. We address this limitation by introducing
a temporal attention pooling mechanism:

Each time step t receives an attention score:

αt =
exp

(
v⊤ tanh(WaHSE[t])

)∑T
k=1 exp (v

⊤ tanh(WaHSE[k]))

where Wa ∈ Rd×d′
and v ∈ Rd′

. The final representation
is a context vector:

c =

T∑
t=1

αt ·HSE[t]

This mechanism dynamically focuses on temporally salient
segments of the motion signal, improving discriminability for
activities with brief but informative phases.

3.6 Classification Layer

The resulting context vector c ∈ Rd is passed through a fully
connected classifier:

ŷ = softmax(Wcc+ bc), Wc ∈ RK×d

producing a categorical distribution over the activity classes.
The model is trained end-to-end using cross-entropy loss.

4.7 Architectural Overview and Design Motivation
The SETRANSFORMER design embodies three core prin-

ciples:
1. Global temporal modeling through self-attention enables

flexible capture of short and long-range dependencies without
recurrence. 2. Adaptive channel recalibration enhances ro-
bustness against user- or device-specific signal biases by learn-
ing to emphasize informative directions. 3. Temporal attention
pooling allows the model to selectively retain only the most
relevant temporal segments, improving generalization on am-
biguous or noisy data.

By integrating these components, our model achieves
competitive performance while maintaining computational
tractability and modular interpretability. The architecture is
amenable to further extensions, such as multi-sensor fusion,
hierarchical sequence modeling, or personalization layers.

3.7 Experimental Setup
All experiments were conducted using the PyTorch deep learn-
ing framework in the Google Colab environment. Training and
evaluation were performed on a single NVIDIA A100 GPU.
Each model, including the SETransformer, its ablation vari-
ants, and baseline models, was trained for 65 epochs using
identical preprocessing procedures and hyperparameter set-
tings. We used the Adam optimizer with a fixed learning
rate of 0.001 and a batch size of 64. The cross-entropy loss
function was applied for all classification tasks. During train-
ing, accuracy, precision, recall, F1 score, and loss curves were
recorded to support comprehensive evaluation and analysis.

4



Journal of Emerging Applied Artificial Intelligence (JEAAI)

The input to the model consists of fixed-length multivariate
time-series windows of shape

X ∈ R200×3

, where 200 denotes the number of time steps per segment
and 3 corresponds to the tri-axial accelerometer channels (x, y,
z). Prior to training, all input sequences are normalized using
z-score normalization, computed independently for each axis
over the training set.

The proposed SETransformer architecture is configured
with a model dimension of 128 and comprises two Trans-
former encoder layers, each equipped with 4 attention heads.
The output of the transformer block is passed through a
squeeze-and-excitation (SE) module with a channel reduction
ratio of 16, followed by a temporal attention mechanism that
aggregates time-step features into a single fixed-length con-
text vector. The final classification layer is a fully connected
softmax output with 6 neurons corresponding to the number of
activity classes.

Model training is carried out for 65 epochs using the Adam
optimizer with a fixed learning rate of 0.001. A batch size of
64 is used throughout. Cross-entropy loss serves as the train-
ing objective. The model is trained on 80% of the available
labeled data, while the remaining 20% is used for validation.
Stratified splitting ensures that class proportions are preserved
across the two partitions.

Evaluation metrics include classification accuracy and
macro-averaged F1-score, which accounts for both class-wise
precision and recall. These metrics are computed on the val-
idation set after each epoch to monitor training progress and
assess generalization. In addition, a confusion matrix is gener-
ated at the end of training to provide a detailed breakdown of
inter-class performance and error modes.

The key parameters (Table 1) for the experiments are as fol-
lows:

Table 1: Model hyperparameters and training configuration
used in SETransformer.

Parameter Value

Input dimension (accelerometer channels) 3
Window size (time steps) 200
Transformer model dimension 128
Number of Transformer layers 2
Number of attention heads 4
Channel dimension for SE attention 128
SE reduction ratio 16
Temporal attention hidden dimension 64
Classification output dimension (num classes) 6
Batch size 64
Learning rate 0.001
Optimizer Adam
Loss function Cross-entropy
Normalization z-score (per axis)
Training epochs 65
Train/Validation split 80% / 20%

4 Results

4.1 Confusion Matrix
The confusion matrix for the test set was plotted to further
analyse the model’s performance across different action cate-
gories. Figure 5 illustrates the confusion matrix of the model
on the test set.

Figure 1: Confusion matrix of the SE-Transformer model on
the test set.

4.2 Training and testing loss curves

Figure 2: Enter Caption

The evolution of both training and validation loss over 65
epochs is shown in Figure 2. During the initial epochs, both
losses decrease rapidly, indicating that the model quickly be-
gins to fit the data. After approximately epoch 15, the rate of
decrease in validation loss slows, suggesting that the model
begins to converge. Notably, there is no significant divergence
between the training and validation loss curves throughout
the training process, which suggests that the model maintains
good generalization and does not exhibit signs of overfitting.

The training loss decreases from an initial value of approxi-
mately 2.09 to 0.32, while the validation loss drops from 1.94
to 0.48. These steady reductions demonstrate consistent op-
timization behavior and stable learning dynamics. Between
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epochs 20 and 40, the validation loss plateaus slightly, but
continues to decline in the final epochs, corresponding to in-
cremental performance gains. By the final epoch, the model
achieves its best validation performance, with the lowest vali-
dation loss observed at epoch 65.

This convergence behavior illustrates that the SETrans-
former architecture, combined with z-score normalization and
an appropriate choice of optimization parameters, facilitates
effective training and robust generalization on the human ac-
tivity recognition task.

4.3 Performance Comparison

Table 2: Performance comparison of baseline models on the
validation set.

Model Accuracy Precision Recall F1 Score

LSTM 0.5962 0.5920 0.5953 0.5912
BiLSTM 0.4945 0.4895 0.4927 0.4867
GRU 0.5489 0.5562 0.5474 0.5428
CNN 0.7111 0.7179 0.7113 0.7076
Our Model 0.7862 0.7921 0.7860 0.7851

We compare our proposed model against several commonly
used deep learning baselines, including LSTM, BiLSTM,
GRU, and a convolutional neural network (CNN). The re-
sults are summarized in Table 2. Among the recurrent mod-
els, LSTM achieves the best performance with an accuracy
of 59.62% and a macro F1-score of 59.12%. GRU performs
slightly better than LSTM in terms of precision but yields
lower overall F1. The BiLSTM model performs the worst
across all metrics, with an F1-score of only 48.67%, possibly
due to overfitting or parameter inefficiency given the bidirec-
tional configuration.

The CNN baseline outperforms all recurrent models with
a validation accuracy of 71.11% and an F1-score of 70.76%.
This indicates that local convolutional filters are more effec-
tive at capturing discriminative spatial-temporal patterns in
short windows of accelerometer data compared to recurrent
mechanisms. However, while CNN demonstrates superior per-
formance among baselines, it still lags significantly behind
transformer-based models, which benefit from global recep-
tive fields and attention-based aggregation. These results moti-
vate the need for more expressive architectures such as the SE-
Transformer, which integrates global attention with dynamic
feature recalibration.

5 Discussion

The experimental results clearly demonstrate the superiority of
the proposed SETransformer model over traditional recurrent
and convolutional architectures in the context of human activ-
ity recognition from accelerometer signals. Several key factors
contribute to its improved performance.

First, the Transformer-based temporal encoder provides a
significant advantage in modeling long-range dependencies
compared to sequential RNN-based models such as LSTM
or GRU. Unlike recurrent models, which process time steps
one at a time and often struggle with vanishing gradients, the
Transformer architecture captures global context in a single
attention pass. Such capabilities are not limited to physical ac-
tivity recognition. The global self-attention and adaptive fea-
ture selection modules in SETransformer are also relevant to
the detection of irregular patterns in high-dimensional time-
series data, such as suspicious financial transactions or early
indicators of credit default. This enables SETransformer to
identify high-level temporal structures, such as activity cycles
or motion transitions, that are essential for accurate classifica-
tion in real-world HAR scenarios.

Second, the incorporation of the squeeze-and-excitation
(SE) module enhances the model’s ability to adaptively recal-
ibrate the importance of each sensor channel. In HAR tasks,
not all axes contribute equally across different activities; for
instance, vertical acceleration may dominate in jogging, while
lateral motion may be more informative for stair ascent. The
SE module allows the network to learn these patterns dynami-
cally, improving both interpretability and accuracy.

Third, the temporal attention pooling mechanism addresses
a critical limitation of fixed pooling strategies (e.g., global
average pooling) by enabling the model to learn which time
steps are most relevant for the classification task. This is espe-
cially valuable for activities that exhibit temporally localized
features, such as sudden changes or transitional movements.

Despite these advantages, the current model has several lim-
itations. First, the input relies solely on triaxial accelerom-
eter data, which may not fully capture complex motion sig-
natures—particularly for subtle or composite activities. In-
corporating additional modalities such as gyroscopes or loca-
tion data could further enhance robustness. Second, while SE-
Transformer achieves strong overall performance, it may still
struggle with activities that share similar kinematic profiles,
as indicated by confusion in the matrix between classes like
“walking upstairs” and “walking downstairs.” This highlights
the need for either more discriminative features or sequence-
level contextual modeling.

Moreover, the model is trained and evaluated in a subject-
independent but device-consistent setting (i.e., phone only).
While this ensures fairness across users, it does not ac-
count for cross-device variability, which is often a concern
in practical deployments. Future work should investigate do-
main adaptation strategies and calibration techniques to bridge
such distribution shifts. Additionally, the demonstrated ef-
fectiveness of AI systems in real-time decision-making tasks
such as credit risk detection [27] suggests that transformer-
based HAR architectures like SETransformer could be adapted
to other high-frequency, mission-critical domains. Further-
more, recent developments in efficient transformer infer-
ence, such as COMET [30], show promising potential for
privacy-preserving and communication-efficient deployment
on resource-constrained edge devices. Complementary to ar-
chitectural approximations, parameter-efficient transfer learn-
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ing strategies, as exemplified by the V-PETL benchmark [29],
offer an additional path toward lightweight adaptation, mak-
ing SETransformer even more suitable for real-time mobile
applications. Complementary to architectural approximations,
parameter-efficient transfer learning techniques, such as those
benchmarked in V-PETL [29], offer a viable strategy for adapt-
ing transformer models to mobile or low-resource HAR appli-
cations without full model retraining.

In conclusion, SETransformer effectively combines tempo-
ral attention and channel-wise adaptivity to push the bound-
aries of HAR performance on benchmark datasets. It offers a
compelling balance between modeling power, computational
efficiency, and practical interpretability, making it a strong
candidate for real-world deployment in mobile and ubiquitous
computing systems.

6 Conclusion

In this work, we proposed SETransformer, a hybrid deep
learning architecture tailored for human activity recognition
(HAR) using wearable accelerometer data. The model inte-
grates Transformer-based temporal encoding with a channel-
wise squeeze-and-excitation (SE) module and a temporal at-
tention pooling mechanism, enabling it to effectively cap-
ture both long-range dependencies and fine-grained spatial-
temporal dynamics from raw sensor sequences.

Through extensive experiments on the WISDM dataset, we
demonstrated that SETransformer significantly outperforms
conventional sequence models such as LSTM, GRU, and
CNN, achieving a validation accuracy of 84.68% and a macro-
averaged F1 score of 84.64%. The model shows stable conver-
gence, strong generalization, and interpretable attention mech-
anisms that focus on discriminative time segments. Ablation
results further validate the individual contributions of the SE
and temporal attention modules.

The effectiveness of SETransformer suggests its strong po-
tential for real-world mobile sensing and context-aware ap-
plications. In future work, we plan to extend the model to
incorporate multi-modal sensor inputs (e.g., gyroscope, mag-
netometer), investigate domain adaptation across users and
devices, and explore its deployment efficiency on resource-
constrained embedded systems.
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