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Abstract—This research propose Causal-Enhanced Feature 

Validation (CEFV), a novel framework for employment 

market analysis that integrates causal discovery with 

explainable machine learning to address the limitations of 

purely correlation-driven feature selection. The proposed 

method introduces a hybrid architecture combining gradient-

boosted models with temporal causal discovery, thereby 

ensuring that predictive features are both statistically 

influential and causally plausible. At its core, CEFV employs 

a Gradient-Boosted Causal Validator (GBCV) to quantify 

feature importance using SHAP values, which are then cross-

validated against causal graphs constructed by a Temporal 

Causal Discovery Unit (TCDU) based on the NOTEARS 

algorithm. Furthermore, the framework incorporates a rolling-

window LSTM validator to capture dynamic causal 

relationships in time-series employment data, enabling 

adaptive feature validation across temporal contexts. The 

system bridges conventional predictive modeling with domain 

knowledge by discarding features with high predictive 

importance but lacking causal support, hence improving 

interpretability and robustness. Implemented using PyTorch 

Geometric and distributed computing tools, CEFV replaces 

manual feature selection with an automated, scalable pipeline 

that outputs validated feature subsets for downstream 

predictive tasks. Moreover, the integration of causal 

explanations into the user interface facilitates transparent 

decision-making by visualizing feature influences alongside 

their causal pathways. The key contribution lies in the 

unification of causal inference and model-agnostic 

interpretability, which distinguishes CEFV from existing 

employment analytics systems that rely solely on predictive 
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performance. Experimental validation on real-world datasets 

demonstrates its effectiveness in identifying stable, causally 

grounded features while maintaining computational efficiency, 

making it suitable for large-scale employment market analysis. 

 

Index Terms—Causal Discovery, Employment Market 

Analysis, Feature Validation, Explainable Machine Learning, 

Temporal Causal Modeling 

 

I. INTRODUCTION 

The employment market has become increasingly complex 

due to rapid technological advancements, globalization, and 

economic fluctuations. Traditional labor market analysis 

methods often rely on econometric models or survey data, 

which may not capture the full dynamics of modern 

employment trends. With the advent of big data, machine 

learning techniques have been applied to analyze large-scale 

employment datasets, including job postings, salary trends, 

and economic indicators [1]. However, these approaches 

frequently prioritize predictive accuracy over interpretability 

and causal validity, potentially leading to spurious correlations 

that lack actionable insights. 

Recent advances in explainable AI, particularly model-

agnostic feature importance techniques like SHAP values [2], 

have improved the transparency of machine learning models. 

These methods quantify the contribution of individual features 

to model predictions, enabling analysts to identify key drivers 

of employment trends. Nevertheless, feature importance 

scores alone cannot distinguish between causal relationships 

and mere statistical associations. This limitation becomes 

critical in employment market analysis, where policymakers 

and businesses require not only accurate predictions but also 

causally valid explanations to inform decisions. 

Causal discovery algorithms offer a promising solution to 

this challenge. Methods such as the PC algorithm [3] and 

NOTEARS [4] can infer causal structures from observational 

data, providing a framework to validate whether statistically 

important features align with plausible causal mechanisms. 

However, existing causal discovery approaches often struggle 

with high-dimensional data and temporal dependencies, which 

are inherent in employment market datasets. Moreover, the 

integration of causal discovery with feature importance 

techniques remains underexplored in the context of labor 

market analysis. 

We propose a hybrid framework that bridges this gap by 

combining model-agnostic feature importance with causal 



 

discovery algorithms. Our approach leverages gradient-

boosted trees to generate SHAP values, which are then cross-

validated against causal graphs constructed from the same data. 

This dual validation ensures that features deemed important by 

the predictive model are also supported by causal evidence. 

Furthermore, we extend this framework to handle temporal 

dynamics through rolling-window analysis with LSTM 

models [5], capturing how feature importance and causal 

relationships evolve over time. 

The key contribution of our work is threefold. First, we 

introduce a novel integration of feature importance and causal 

discovery techniques, providing a more robust validation 

mechanism for employment market analysis. Second, we 

address the temporal aspect of labor market data by 

incorporating time-series analysis, enabling the detection of 

dynamic causal relationships. Third, we demonstrate how this 

framework can be applied to real-world employment datasets, 

offering practical insights for policymakers and businesses. 

Prior research in employment market analysis has explored 

various aspects of big data applications. For instance, [6] 

demonstrated the use of big data for labor market analysis, 

while [7] highlighted the potential of employer-employee 

microdata for understanding unemployment. However, these 

studies often lack a causal perspective, focusing instead on 

descriptive or predictive analytics. Our work builds upon these 

foundations by introducing causal validation as a critical 

component of employment market analysis. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work in employment market analysis, 

explainable AI, and causal discovery. Section 3 provides 

background on the key techniques used in our framework. 

Section 4 details the proposed hybrid framework, including its 

components and integration. Section 5 describes the 

experimental setup, while Section 6 presents the results. 

Section 7 discusses the implications and future directions, and 

Section 8 concludes the paper. 

II. RELATED WORK 

Recent advances in employment market analysis have 

increasingly incorporated machine learning techniques to 

process large-scale datasets. Traditional econometric 

approaches, while theoretically grounded, often struggle with 

the high dimensionality and nonlinear relationships present in 

modern employment data [1]. This has led to growing interest 

in data-driven methods that can capture complex patterns 

without relying on restrictive parametric assumptions. 

A. Feature Importance in Employment Analytics 

Model-agnostic feature importance techniques have 

emerged as valuable tools for interpreting machine learning 

models in labor economics. SHAP values, derived from 

cooperative game theory, provide a unified framework for 

explaining model predictions by quantifying each feature ’s 

marginal contribution [2]. These methods have been applied to 

analyze factors influencing wage determination [8] and 

employment outcomes [9]. However, as noted in [10], feature 

importance scores alone cannot establish causal relationships, 

potentially leading to misleading interpretations when 

correlations are spurious. 

B. Causal Inference in Labor Economics 

The labor economics literature has long recognized the 

importance of causal inference, with instrumental variables 

and difference-in-differences being established methods for 

addressing endogeneity [11]. More recently, causal discovery 

algorithms have been adapted for employment market analysis, 

with [12] demonstrating their application to identify 

directional relationships in occupational mobility data. The 

NOTEARS algorithm, in particular, has shown promise in 

learning causal structures from high-dimensional employment 

data while enforcing acyclicity constraints [4]. 

C. Hybrid Approaches 

Several studies have attempted to bridge predictive 

modeling with causal inference in related domains. [13] 

proposed combining g-computation with feature importance 

methods for healthcare applications, while [14] developed a 

framework for evaluating feature importance relative to causal 

graphs. In the context of economic forecasting, [15] employed 

Lasso regression for both variable selection and prediction, 

though without explicit causal validation. 

The proposed CEFV framework advances beyond these 

existing approaches by systematically integrating causal 

discovery with feature importance validation. Unlike [1] 

which focuses primarily on predictive analytics, or [11] which 

emphasizes theoretical causal models, our method 

operationalizes causal validation within an automated machine 

learning pipeline. This distinguishes our work from [13] by 

incorporating temporal dynamics specific to employment data, 

and from [12] through the use of gradient-boosted models for 

more robust feature importance estimation. The resulting 

system provides both the scalability of data-driven methods 

and the theoretical rigor of causal inference, addressing a 

critical gap in current employment market analysis tools. 

III. BACKGROUND AND PRELIMINARIES 

Understanding employment market dynamics requires 

combining causal inference with robust feature selection 

techniques while accounting for temporal patterns. This 

section establishes the theoretical foundations necessary for 

our proposed framework, covering three key areas: causal 

inference methodologies, feature selection approaches, and 

machine learning techniques for time-series analysis. 

A. Causal Inference in Data Analysis 

Causal discovery has become increasingly important in 

data-driven fields as it moves beyond correlation to identify 

directional relationships. The fundamental framework for 

causal analysis involves representing variables as nodes in a 

directed acyclic graph (DAG), where edges denote causal 

relationships [16]. Structural causal models (SCMs) formalize 

this approach by specifying how each variable depends on its 

causal parents through functional relationships and noise terms. 

For employment market analysis, these models help 

https://bayes.cs.ucla.edu/jsm-july2012-pdf.pdf


 

distinguish between genuine economic drivers and spurious 

correlations that may arise from confounding factors. 

Two primary approaches dominate causal discovery: 

constraint-based methods like the PC algorithm [17] that test 

conditional independencies, and score-based methods such as 

NOTEARS [4] that optimize a score function while enforcing 

acyclicity. The latter has gained prominence in high-

dimensional settings due to its differentiable formulation: 

score G = ℒ G + λR G                          （1） 

where ℒ(G)  measures data likelihood given graph G , and 

R(G)  penalizes graph complexity. This formulation enables 

gradient-based optimization while maintaining 

interpretability—a crucial requirement for employment market 

analysis where policymakers need transparent reasoning. 

B. Feature Selection and Validation Techniques 

Feature selection methods help identify the most relevant 

variables from high-dimensional employment datasets. Mutual 

information provides a foundation for measuring feature 

relevance through the dependence between variables X and Y: 

MI(X; Y) = ∑ ∑ p

y∈Yx∈X

(x, y)log (
p(x, y)

p(x)p(y)
)            (2) 

Three main paradigms exist for feature selection: filter 

methods that rank features based on statistical measures [18], 

wrapper methods that evaluate subsets using predictive 

performance [19], and embedded methods like L1 

regularization that perform selection during model training 

[20]. While effective for prediction, these approaches lack 

causal validation—a gap our framework addresses by 

combining them with causal discovery. 

C. Machine Learning for Time-Series Data 

Employment market analysis requires specialized 

techniques to handle temporal dependencies in indicators like 

unemployment rates or job postings. Recurrent Neural 

Networks (RNNs), particularly Long Short-Term Memory 

(LSTM) networks [5], have proven effective for modeling 

such sequences through their gated architecture: 

ℎt = σ(Wℎxt + Uℎℎt−1 + bℎ)                     (3) 

where ℎt represents the hidden state at time t, and σ denotes 

the sigmoid activation. These models capture long-range 

dependencies that traditional econometric methods often miss. 

However, they typically operate as black boxes, necessitating 

complementary techniques like SHAP values [2] to explain 

their predictions—an essential requirement for policy-relevant 

applications. The integration of these explainability methods 

with causal validation forms a core innovation of our proposed 

framework. 

IV. PROPOSED HYBRID FRAMEWORK 

The proposed hybrid framework integrates model-agnostic 

feature importance techniques with causal discovery 

algorithms to validate machine learning model features against 

domain knowledge in employment market analysis. This 

section presents the technical details of our approach, 

organized into three subsections: the overall architecture, the 

causal-explainable validation mechanism, and implementation 

specifics. 

A. Architecture of the Hybrid Framework 

The system architecture consists of three primary 

components: the feature importance analyzer, the causal 

discovery module, and the temporal validation unit. Figure 1 

illustrates the data flow and interactions between these 

components. 
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Feature Importance Analyzer
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Fig. 1 System Architecture with Causal-Enhanced Feature 

Validation Module. 

 

The feature importance analyzer employs gradient-boosted 

decision trees (XGBoost) to generate initial feature rankings. 

For a given dataset X ∈ ℝn×d  with n samples and d features, 

the model produces predictions f(X)  and computes SHAP 

values ϕi,j for each feature j and sample i: 

ϕi,j = ∑
|S|! (|F| − |S| − 1)!

|F|!
S⊆F\{j}

(f(S ∪ {j}) − f(S))    (4) 

where F represents the complete feature set. These values 

quantify the marginal contribution of each feature to the 

model’s predictions, providing a robust measure of feature 

importance that accounts for interactions between variables. 

The causal discovery module implements the NOTEARS 

algorithm to construct a directed acyclic graph (DAG) 

representing causal relationships between features. This 

module solves the constrained optimization problem: 

min
W

𝔼[∥ X − WTX ∥F
2] + λ ∥ W ∥1  subject to ℎ(W) = 0   (5) 

where W  is the weighted adjacency matrix of the causal 

graph, and ℎ(W) enforces the acyclicity constraint through a 

continuous characterization of DAGs. The ℓ1  penalty term 

promotes sparsity in the learned graph structure. 

B. Causal-Explainable Validation Mechanism 

The validation mechanism operates by comparing the 

feature importance rankings from the SHAP analysis with the 

causal structure discovered by NOTEARS. For each feature j, 
we compute two scores: the normalized SHAP importance 

sj
SHAP and the causal influence score sj

Causal: 

https://philarchive.org/archive/SPICPA-2
https://proceedings.neurips.cc/paper/2020/file/f8b7aa3a0d349d9562b424160ad18612-Paper.pdf
https://ieeexplore.ieee.org/abstract/document/1453511/
https://ieeexplore.ieee.org/iel7/8254253/9142126/09142153.pdf
https://machine-learning.martinsewell.com/feature-selection/BradleyMangasarian1998.pdf
https://link.springer.com/chapter/10.1007/978-3-642-24797-2_4
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf


 

sj
SHAP =

∑ |ϕi,j|i

max
k

∑ |ϕi,k|i

                         (6) 

sj
Causal = ∑ |Wk,j|

k≠j

+ ∑ |Wj,k|

k≠j

                    (7) 

where Wk,j  represents the causal influence of feature k on 

feature j  according to the learned DAG. Features are then 

classified into four categories based on their scores: 

1) Validated Features: High sj
SHAP and high sj

Causal 

2) Predictive but Non-Causal: High sj
SHAP but low sj

Causal 

3) Causal but Non-Predictive: Low sj
SHAP but high sj

Causal 

4) Irrelevant Features: Low scores in both metrics 

The framework prioritizes validated features for 

downstream modeling tasks while flagging predictive but non-

causal features for further domain expert review. This 

approach ensures that the final model incorporates only 

features with both statistical significance and causal 

plausibility. 

C. Implementation and Operational Details 

The temporal validation component extends the framework 

to handle time-series employment data through a rolling-

window analysis. For a time series Xt ∈ ℝd  at time t , we 

employ a bidirectional LSTM network to capture temporal 

dependencies: 

ℎt
f = LSTMf(xt, ℎt−1

f )                           (8) 

ℎt
b = LSTMb(xt, ℎt+1

b )                           (9) 

where ℎt
f and ℎt

b represent the forward and backward hidden 

states respectively. The attention mechanism computes time-

dependent feature importance weights αt,j: 

αt,j = softmax (vTtanh(Wℎℎt + Wxxt,j + b))       (10) 

These attention weights serve as temporal analogs to SHAP 

values, allowing the framework to track how feature 

importance evolves over time. The causal discovery process is 

repeated within each rolling window to detect changes in 

causal structure, enabling adaptive validation of features in 

dynamic employment market conditions. 

The complete implementation leverages PyTorch for neural 

network components and Dask for distributed processing of 

large-scale employment datasets. The system outputs include 

validated feature sets, causal graphs, and temporal importance 

trends, all visualized through an interactive dashboard that 

highlights discrepancies between statistical and causal 

importance. This operational design ensures scalability to 

high-dimensional employment datasets while maintaining 

interpretability for domain experts. 

V. EXPERIMENTAL SETUP 

To evaluate the proposed Causal-Enhanced Feature 

Validation (CEFV) framework, we designed a comprehensive 

experimental protocol that assesses both the technical 

performance and practical utility of our approach in 

employment market analysis. This section details the datasets, 

baseline methods, evaluation metrics, and implementation 

specifics used in our experiments. 

A. Datasets and Preprocessing 

We evaluated our framework on three real-world 

employment market datasets with complementary 

characteristics: 

1) U.S. Bureau of Labor Statistics (BLS) Employment 

Data[21] 

Contains monthly employment statistics across 

industries (2010-2022) with 127 economic indicators. 

We processed this into a multivariate time series with 

144 time steps and 127 features, including sector-

specific employment counts, wage growth rates, and 

geographic distributions. 

2) LinkedIn Job Postings Dataset[22] 

Comprises 2.3 million job postings (2018-2021) with 58 

features covering required skills, salary ranges, and 

company attributes. We aggregated this to quarterly 

resolution and derived 42 interpretable features through 

NLP processing. 

3) OECD Labor Market Indicators[23] 

Provides cross-country quarterly labor market data 

(2000-2022) for 38 countries with 89 indicators. This 

dataset introduces international comparative dimensions 

to our evaluation. 

All datasets underwent standardized preprocessing: 

Missing values imputed using Multivariate Imputation by 

Chained Equations (MICE). 

Numerical features standardized to zero mean and unit 

variance. 

Categorical features encoded via target encoding. 

Time-series alignment using dynamic time warping for 

cross-dataset analysis. 

B. Baseline Methods 

We compared CEFV against four categories of baseline 

feature selection and validation approaches: 

1) 1.Pure Feature Importance Methods 

SHAP-XGBoost [2]. 

Permutation Importance (Random Forest) [24]. 

2) Causal Discovery Methods 

NOTEARS [4]. 

PC Algorithm [3]. 

3) Temporal Feature Selection 

LSTM-Attention [25]. 

Granger Causality [26]. 

4) Integrated Approaches 

Causal-Filter (NOTEARS + SHAP thresholding). 

TEMP-Causal (Granger + LSTM-Attention). 

Each baseline was implemented using their original authors’ 

recommended configurations, with hyperparameters tuned via 

Bayesian optimization on a validation set comprising 20% of 

each dataset. 

C. Evaluation Metrics 

We employed four complementary metric categories to 

assess framework performance: 

1) Predictive Performance 

https://www.bls.gov/opub/mlr/2016/article/pdf/current-employment-statistics-survey-100-years-of-employment-hours-and-earnings.pdf
http://escoe-website.s3.amazonaws.com/wp-content/uploads/2022/05/30133155/TR-19.pdf
https://books.google.com/books?hl=en&lr=&id=pQXXEAAAQBAJ&oi=fnd&pg=PA236&dq=oecd+employment+outlook+2022&ots=wrsVq-X21c&sig=yfy8zz6X1Cb6snhcEOlWnaP22_8


 

Time-series RMSE: √
1

T
∑ (yt − ŷt)

2T
t=1  

Directional Accuracy: 
1

T−1
∑ 𝕀T

t=2 (sign(yt − yt−1) =

sign(ŷt − ŷt−1)) 

2) Causal Validity 

Structural Hamming Distance (SHD) [27] 

Causal Edge Precision: 
Correctly Identified Causal Edges

Total Predicted Edges
 

3) Temporal Stability 

Feature Importance Volatility: 
1

T−1
∑ ∥T

t=2 wt − wt−1 ∥2 

Causal Graph Consistency: 
2

T(T−1)
∑ ∑ JaccardT

s=t+1
T−1
t=1 (Gt, Gs) 

4) Computational Efficiency 

Wall-clock time for complete feature validation 

Memory footprint during processing 

D. Implementation Details 

Our framework was implemented in TensorFlow 2.8 with 

the following configuration: 

 

The CEFV framework was implemented in Python 3.9 with 

the following key components: 

1) Causal Discovery Unit: NOTEARS implementation 

using PyTorch with Adam optimizer (lr=0.001) and λ =
0.1 sparsity penalty 

2) Feature Importance Analyzer: XGBoost (v1.6) with 

1000 trees, max_depth=6, learning_rate=0.01 

3) Temporal Validator: Bidirectional LSTM (2 layers, 64 

hidden units) with attention mechanism 

4) Rolling Window Configuration: 12-month windows 

with 3-month stride for BLS/OECD data, 4-quarter 

windows for LinkedIn data 

All experiments were conducted on AWS EC2 instances 

(r5.8xlarge) with 32 vCPUs and 256GB RAM. For 

reproducibility, we fixed random seeds (PyTorch: 42, NumPy: 

4242) and made our code available in a public repository. The 

complete validation pipeline including causal discovery and 

feature importance computation required approximately 3.2 

hours for the largest dataset (BLS). 

VI. EXPERIMENTAL RESULTS 

Our comprehensive evaluation of the CEFV framework 

demonstrates its effectiveness across multiple dimensions of 

employment market analysis. The results reveal significant 

improvements in both predictive performance and causal 

validity compared to baseline methods, while maintaining 

computational efficiency suitable for large-scale deployment. 

A. Predictive Performance Analysis 

The framework’s dual validation mechanism substantially 

improved time-series forecasting accuracy across all datasets. 

Table 1 compares the RMSE and directional accuracy of 

CEFV against baseline approaches on the BLS dataset, with 

similar patterns observed for other datasets. 

Table 1. Predictive performance comparison on BLS 

employment data (2015-2022) 

Method 

RMSE 

(×10^3) 

Directional Accuracy 

(%) 

SHAP-XGBoost 5.72 68.3 

NOTEARS 6.15 62.1 

LSTM-

Attention 

5.34 71.2 

Causal-Filter 5.08 73.5 

TEMP-Causal 4.91 75.8 

CEFV (Ours) 4.23 79.4 

 

The integration of causal validation with temporal analysis 

yielded particularly strong results for directional accuracy, 

which increased by 11.1 percentage points over pure SHAP-

based selection. This improvement suggests that causal 

filtering helps eliminate spurious features that may contribute 

to prediction errors during economic turning points. The 

rolling-window LSTM component further enhanced 

performance by capturing time-varying relationships between 

employment indicators. 

B. Causal Validation Effectiveness 

The causal discovery module successfully identified 

plausible economic relationships while filtering out 

statistically important but non-causal features. Figure 2 

illustrates the causal graph learned from the OECD dataset, 

highlighting validated relationships between key labor market 

indicators. 

 
Fig. 2 Learned causal graph showing validated relationships 

between employment indicators. 

 

Quantitatively, CEFV achieved superior causal edge 

precision (0.82) compared to standalone NOTEARS (0.71) 

and PC algorithm (0.65) implementations. The structural 

Hamming distance to expert-validated ground truth graphs 

was reduced by 38% compared to baseline causal discovery 

methods. Notably, the framework consistently identified 

established economic relationships such as the causal link 

http://proceedings.mlr.press/v80/yang18a/yang18a.pdf


 

from productivity growth to wage increases [28], while 

flagging potentially spurious correlations like the apparent 

relationship between tech job postings and manufacturing 

employment rates. 

C. Temporal Stability Assessment 

The rolling-window analysis revealed significant temporal 

variations in both feature importance and causal structures. 

Figure 3 shows the volatility of feature importance weights 

across different economic periods, demonstrating CEFV’s 

ability to adapt to changing market conditions. 

 
Fig. 3 Temporal evolution of feature importance weights 

across economic cycles. 

 

The framework maintained strong causal graph consistency 

(Jaccard similarity > 0.75) during stable economic periods 

while appropriately detecting structural breaks during events 

like the COVID-19 pandemic. This adaptability proved crucial 

for maintaining prediction accuracy, as evidenced by a 22% 

smaller increase in RMSE during volatile periods compared to 

static methods. 

D. Computational Performance 

Despite its sophisticated validation pipeline, CEFV 

demonstrated scalable performance suitable for operational 

deployment. Table 2 presents the computational requirements 

for processing the largest dataset (BLS). 

Table 2. Computational performance metrics 

Metric Value 

Total Processing Time 3.2 hours 

Peak Memory Usage 48 GB 

Average Window Processing 9.4 minutes 

Parallelization Speedup 6.8× (32 cores) 

The distributed implementation efficiently handled the 

high-dimensional nature of employment data, with the causal 

discovery module accounting for approximately 60% of total 

computation time. Memory usage remained manageable 

through batch processing of time windows and optimized 

sparse matrix operations in the NOTEARS implementation. 

E. Ablation Study 

To isolate the contribution of each framework component, 

we conducted an ablation study measuring performance with 

individual modules disabled. Table 3 shows the relative 

degradation in key metrics when removing specific 

components. 

Table 3. Ablation study results (relative change from full 

CEFV) 

Removed 

Component 

RMSE 

Change 

(%) 

SHD 

Change 

(%) 

Runtime 

Change (%) 

Causal Validation +18.7 +112.4 -42.1 

Temporal 

Analysis 

+12.3 +28.6 -37.8 

SHAP Importance +24.5 +9.2 -23.5 

NOTEARS 

Optimization 

+15.1 +64.3 -18.9 

The results demonstrate that each component contributes 

significantly to overall performance, with causal validation 

showing the largest impact on causal validity (SHD) and 

SHAP importance being most critical for predictive accuracy. 

The temporal analysis module proved particularly valuable 

during volatile periods, reducing RMSE spikes by 31% 

compared to the static version. 

VII. DISCUSSION AND FUTURE WORK 

A. Limitations and Potential Biases of the Proposed Framework 

While CEFV demonstrates strong performance across 

multiple evaluation metrics, several limitations warrant 

discussion. First, the framework inherits fundamental 

assumptions from both causal discovery and feature 

importance methodologies. The NOTEARS algorithm 

assumes linear causal relationships in its basic formulation, 

potentially missing nonlinear interactions that may exist in 

complex labor market dynamics [29]. This limitation could be 

partially addressed by incorporating kernel-based or neural 

network extensions of causal discovery methods [30]. 

Second, the validation mechanism relies on observational 

data, making it susceptible to unmeasured confounding 

variables that could distort both feature importance and causal 

relationships. For instance, macroeconomic shocks or policy 

changes not captured in our datasets may simultaneously 

affect multiple employment indicators, creating spurious 

causal links [31]. Future iterations could integrate instrumental 

variables or natural experiment designs to strengthen causal 

claims. 

Third, the temporal analysis component assumes 

stationarity within each rolling window, which may not hold 

during periods of rapid labor market transformation. The 

COVID-19 pandemic revealed this limitation, as the 

framework required shorter window sizes to adapt to abrupt 

structural changes [32]. Developing adaptive windowing 

https://www.nber.org/system/files/working_papers/w24165/w24165.pdf


 

strategies that automatically adjust to volatility levels could 

enhance robustness. 

B. Broader Applications and Future Directions 

The principles underlying CEFV extend beyond 

employment market analysis to various domains requiring 

causal feature validation. In healthcare analytics, similar 

approaches could help distinguish genuine risk factors from 

correlated biomarkers in electronic health records [33]. 

Financial risk assessment represents another promising 

application area, where distinguishing causal drivers from 

coincidental market indicators is crucial [34]. 

Three particularly promising research directions emerge 

from our work. First, developing semi-supervised versions of 

the framework could incorporate domain expert knowledge to 

guide causal discovery, potentially through constrained 

optimization or Bayesian priors [35]. Second, extending the 

temporal analysis to handle irregularly sampled data would 

broaden applicability to emerging data sources like web-

scraped job postings or mobile location data [36]. Third, 

creating distributed implementations optimized for streaming 

data could enable real-time labor market monitoring. 

C. Ethical Considerations and Responsible Deployment 

The deployment of automated employment analytics 

systems raises important ethical questions that our framework 

begins to address but does not fully resolve. While causal 

validation reduces reliance on spurious correlations, the 

potential for algorithmic bias remains if historical datasets 

encode discriminatory hiring practices or wage gaps [37]. 

Future work should integrate fairness constraints directly into 

the feature validation process, perhaps through techniques like 

counterfactual fairness testing [38]. 

Transparency mechanisms in CEFV represent a step toward 

responsible AI, but additional safeguards are needed for high-

stakes applications like job matching or policy formulation. 

Developing audit trails that document all feature validation 

decisions could enhance accountability [39]. Furthermore, the 

framework should be complemented with human oversight 

protocols to review edge cases where statistical and causal 

evidence diverge significantly. 

Privacy considerations also merit attention, particularly 

when analyzing sensitive employment data. While our current 

implementation uses aggregated statistics, extensions to 

individual-level data would require differential privacy 

guarantees or federated learning approaches [40]. These 

enhancements would ensure the framework’s benefits can be 

realized without compromising individual privacy rights. 

VIII. CONCLUSION 

The CEFV framework represents a significant advancement 

in employment market analysis by systematically integrating 

causal validation with feature importance techniques. Through 

rigorous experimentation on diverse datasets, we demonstrated 

that combining gradient-boosted models with temporal causal 

discovery yields more reliable and interpretable insights than 

conventional correlation-based approaches. The framework’s 

ability to distinguish between statistically predictive and 

genuinely causal features addresses a critical gap in labor 

economics research, where actionable policy decisions require 

not just accurate predictions but also validated explanations. 

Our results highlight the practical benefits of this hybrid 

approach, particularly in dynamic economic environments 

where relationships between variables evolve over time. The 

rolling-window analysis component proved especially 

valuable for detecting structural shifts in labor markets, 

enabling more responsive modeling compared to static 

methods. Furthermore, the computational efficiency of the 

distributed implementation ensures scalability to large-scale 

employment datasets, making it feasible for real-world 

deployment by policymakers and industry analysts. 

The framework’s modular design allows for future 

extensions, including the incorporation of nonlinear causal 

discovery methods and fairness-aware feature validation. By 

bridging machine learning with causal inference, CEFV 

provides a principled foundation for data-driven labor market 

analysis while mitigating risks associated with spurious 

correlations. This work establishes a methodological precedent 

that could be adapted to other domains where distinguishing 

causation from correlation is essential for decision-making. 
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