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Abstract—This research propose an interpretable hybrid 

neural-temporal framework for youth employment trend 

prediction that integrates dilated convolutional neural 

networks (CNNs) with self-attention mechanisms to extract 

and analyze spatiotemporal features from multivariate 

employment indicators. The framework addresses the dual 

challenges of capturing multi-scale temporal dependencies and 

providing policy-actionable insights, which are critical for 

understanding complex labor market dynamics. The 

methodology combines a dilated CNN architecture to isolate 

local patterns such as seasonal fluctuations and abrupt shocks, 

followed by a modified self-attention mechanism that 

dynamically weights features and time steps to enhance 

interpretability. Furthermore, a gating mechanism derives 

time-aggregated feature importance scores, enabling recursive 

refinement of high-impact variables during preprocessing. The 

proposed method interfaces with conventional modules 

through robust median-based normalization and attention-

guided feature selection, which employs LASSO 

regularization to prioritize influential predictors. Implemented 

with TensorFlow/Keras and optimized for GPU acceleration, 

the framework handles high-resolution data efficiently while 

maintaining transparency in decision-making. Experiments 

demonstrate its superiority over traditional ARIMA or RNN-

based approaches, particularly in scenarios requiring both 

accuracy and interpretability. The results highlight its potential 

as a tool for policymakers to identify critical drivers of youth 

employment trends, thereby supporting targeted interventions 

and long-term labor market planning. 

 

Index Terms—Youth employment forecasting, Interpretable 

machine learning, Spatiotemporal modeling, CNN-attention 
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I. INTRODUCTION 

Youth employment market dynamics present complex 

spatiotemporal patterns influenced by multifaceted 

socioeconomic factors, including education levels, industry 

demands, and macroeconomic shocks. Traditional forecasting 

methods like Vector Autoregression [1] and ARIMA models 

[2] often struggle to capture these nonlinear interactions, while 

deep learning approaches such as LSTM networks [3] and 

Temporal Convolutional Networks [4] lack interpretability—a 

critical requirement for policy decisions. This limitation 

becomes particularly evident when analyzing heterogeneous 

youth labor markets, where localized trends and sudden 

disruptions (e.g., pandemic-induced job losses) require both 

granular temporal modeling and transparent feature attribution. 

Recent advances in hybrid neural architectures have 

attempted to bridge this gap. The success of CNN-LSTM 

hybrids [5] in capturing hierarchical temporal features 

demonstrates the potential of combining convolutional 

operations with sequential modeling. Meanwhile, self-

attention mechanisms [6] have shown promise in identifying 

critical time steps and features through dynamic weight 

allocation. However, existing implementations often treat 

these components as black boxes, failing to provide the 

explicit linkages between input features and policy-relevant 

outcomes that labor economists and policymakers require. For 

instance, while Google Trends data [7] can improve 

unemployment rate predictions, current methods cannot 

systematically explain how specific search queries correlate 

with employment shifts across demographic subgroups. 

Our work introduces a novel framework that addresses 

these limitations through three key innovations. First, we 

employ dilated convolutions with exponentially increasing 

receptive fields to model both short-term fluctuations and 

long-term trends in youth employment indicators, avoiding the 

memory constraints of recurrent architectures. Second, we 

design a dual-path attention mechanism that separately 

processes temporal and cross-sectional dependencies, 

generating interpretable importance scores for each feature at 

different time scales. Third, we integrate these scores into a 

feature engineering pipeline that iteratively refines the input 

space based on their economic significance—a process guided 

by labor market theory [8] rather than purely statistical criteria. 

The proposed method offers distinct advantages over 



 

existing approaches. Unlike traditional econometric models 

[9], it handles high-dimensional, non-stationary data without 

requiring manual feature engineering. Compared to pure deep 

learning solutions [10], it maintains interpretability through 

attention-derived feature weights that align with known labor 

market drivers like educational attainment and sectoral growth. 

Experimental results on European and Asian youth 

employment datasets show 12-18% improvement in prediction 

accuracy over baseline models while providing actionable 

insights into regional employment disparities. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work in labor market forecasting and 

interpretable time series analysis. Section 3 formalizes the 

problem setting and introduces necessary background 

concepts. Section 4 details our hybrid architecture and its 

interpretability mechanisms. Sections 5 and 6 present 

experimental setup and results, followed by discussion of 

implications and future research directions in Section 7. 

II. RELATED WORK 

Recent advances in time series forecasting and interpretable 

machine learning have produced several approaches relevant 

to youth employment trend prediction. These works can be 

broadly categorized into three research directions: 

conventional econometric models, deep learning architectures, 

and hybrid interpretable frameworks. 

A. Conventional Econometric Approaches 

Traditional labor market forecasting has relied heavily on 

econometric techniques such as ARIMA models [2] and 

vector autoregression [1]. While these methods provide well-

understood statistical properties, they often fail to capture the 

nonlinear interactions prevalent in youth employment data. 

Recent extensions incorporate alternative data sources; for 

instance, [7] demonstrated how Google Trends data could 

enhance the predictive power of conventional models. 

However, such approaches remain limited by their linear 

assumptions and inability to process high-dimensional feature 

spaces effectively. 

B. Deep Learning for Time Series Forecasting 

The success of deep learning in sequence modeling has led 

to its adoption for economic forecasting. LSTM networks [3] 

have become particularly prevalent due to their ability to learn 

long-term dependencies, as evidenced by their application in 

predicting Iraqi youth unemployment trends [11]. Temporal 

convolutional networks [4] offer an alternative with parallel 

processing advantages, while graph neural networks have 

shown promise for detecting anomalies in multivariate labor 

market indicators [12]. These methods typically outperform 

traditional econometric models in accuracy but suffer from 

opacity in decision-making—a critical drawback for policy 

applications. 

C. Interpretable Hybrid Frameworks 

Recent efforts have sought to combine predictive 

performance with interpretability. The XCM architecture [13] 

introduced explainable convolutions for time series 

classification, while [14] developed specialized attention 

mechanisms for demand forecasting. In labor market analysis, 

[15] employed feature importance rankings to explain 

predictions, though without the temporal granularity needed 

for youth employment analysis. Notably, most existing 

interpretable methods focus on post-hoc explanations rather 

than building inherently transparent architectures. 

The proposed framework advances beyond these 

approaches through its integrated design of multi-scale pattern 

extraction and dynamic feature weighting. Unlike [13], our 

method processes both temporal and cross-sectional 

dependencies simultaneously via the attention mechanism. 

Compared to [11], we replace recurrent connections with 

dilated convolutions to better capture long-range dependencies 

while maintaining computational efficiency. Most 

significantly, our feature importance scoring system provides 

policy-actionable insights that surpass the static interpretations 

offered by [15], enabling dynamic assessment of how different 

factors influence youth employment across varying time 

horizons. 

III. BACKGROUND AND PRELIMINARIES 

Understanding youth employment trends requires grounding 

in both time series analysis fundamentals and the specific 

challenges of labor market dynamics. This section establishes 

the theoretical foundations necessary to comprehend our 

proposed framework, progressing from general temporal 

modeling concepts to specialized considerations for 

employment forecasting. 

A. Time Series Analysis Basics 

Time series decomposition forms the cornerstone of 

temporal pattern analysis, where any observed series Xt can be 

expressed as: 

Xt = Tt + St + Rt    (1) 
where Tt  represents the trend component, St  captures 

seasonality, and Rt  denotes the residual noise [2]. For 

employment data, the trend component often reflects long-

term economic cycles, while seasonality may correspond to 

academic calendar effects or industry-specific hiring patterns. 

The decomposition becomes particularly challenging when 

dealing with youth employment data, where structural breaks 

frequently occur due to policy interventions or demographic 

shifts [8]. 

Stationarity represents another critical concept, typically 

assessed through the variance: 

Var(Xt) = σ2    (2) 
where constant variance indicates stationarity—a common 

assumption in traditional models like ARIMA [2]. However, 

youth employment series frequently violate this assumption 

due to evolving labor market institutions and technological 

disruptions, necessitating more flexible modeling approaches 

[16]. 

B. Challenges in Youth Employment Trend Prediction 

Youth labor markets exhibit unique characteristics that 

https://link.springer.com/chapter/10.1007/978-3-319-52452-8_3
https://books.google.com/books?hl=en&lr=&id=zKJp2OgfjfQC&oi=fnd&pg=IA2&dq=Youth+employment+market+trend+prediction+analysis&ots=_HNUSHpok_&sig=2QmZK1ykzE7ry8Z9xDg88M91xOk
https://link.springer.com/chapter/10.1007/978-3-319-52452-8_3
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.13.1.1


 

complicate forecasting. The variance structure often follows 

heteroskedastic patterns: 

Var(Xt) = f(t)    (3) 
where variance changes over time due to factors like 

educational expansion or economic crises [17]. Unlike general 

unemployment series, youth employment data contains 

pronounced age-cohort effects—where specific generations 

face systematically different labor market conditions—and 

period effects reflecting broader economic climates [18]. 

Multidimensional interactions further complicate analysis. 

Regional disparities, educational attainment levels, and 

industry compositions create complex dependency structures 

that traditional univariate models cannot capture. For instance, 

the employment prospects of university graduates in 

technology hubs may correlate differently with 

macroeconomic indicators compared to vocational school 

graduates in manufacturing regions [19]. 

C. Fundamentals of Multivariate Time Series Forecasting 

Multivariate approaches address these limitations by 

modeling interdependencies between variables. The vector 

autoregressive (VAR) framework [1] generalizes to: 

Xt =∑Ai

p

i=1

Xt−i + et    (4) 

where Ai  contains coefficient matrices and et  represents 

multivariate white noise. While VAR models capture linear 

cross-variable dependencies, they struggle with the high-

dimensional, nonlinear relationships present in youth 

employment data—such as threshold effects where certain 

education levels become prerequisites for employment during 

recessions [20]. 

Modern neural approaches overcome some limitations 

through distributed representations and nonlinear activation 

functions. However, they introduce new challenges in 

maintaining interpretability—a crucial requirement for policy 

applications where stakeholders need to understand which 

factors drive predictions and how their influence varies across 

time horizons [21]. This tension between predictive power and 

explainability motivates our hybrid architecture design. 

IV. HYBRID NEURAL TEMPORAL MODELING FRAMEWORK 

The proposed framework combines the multi-scale pattern 

extraction capabilities of convolutional networks with the 

dynamic feature weighting of attention mechanisms, 

specifically designed for interpretable youth employment 

trend prediction. This section details the architectural 

components and their mathematical formulations. 

A. Framework Architecture 

The architecture processes multivariate time series inputs  

where  represents time steps and  denotes feature dimensions 

(e.g., education levels, regional GDP). As shown in Figure 1, 

the system comprises three core modules: 1) a gated dilated 

CNN for hierarchical feature extraction, 2) a dual-path 

attention mechanism for temporal and cross-sectional 

dependency modeling, and 3) an importance-weighted feature 

engineering module. 

Multivariate Input

X    ^(T×d)

Education, GDP, etc.

MAD Normalization

Eq. (5)

Gated Dilated CNN

r=1 r=2 r=4 r=8

Multi-scale Pattern Extraction

Depthwise-Separable Conv

H^(L) = ReLU(W_depth   H)   σ(W_point H)

Dilation: [1,2,4,8,16,32] - Eq. (6)

Output: H^(L)

Temporal Attention

A_t̂ temp = softmax(QK^T/ d_k)

Time-step Dependencies

Multi-head: 4 heads - Eq. (7)

Feature Attention

A_f = softmax(Q_f K_f^T/ d_k)

Cross-sectional Weights

Feature Interactions

Combined Features

Z = [A_t^temp H W_v; A_f H^T W_v^T] - Eq. (8)

Dynamic Feature Engineering

Importance Scoring
v_imp,j = Σ α_t,j · MLP(z_t,j) - Eq. (9)

LASSO Regularization
λΣ |β_j|/v_imp,j - Eq. (10)

Policy-Actionable Insights
Dynamic Feature Refinement

Interpretable Predictions

Youth Employment Forecasts

+ Feature Importance Rankings

+ Temporal Attribution Scores

Temporal Interpretability

  When do features matter?

  Multi-scale temporal patterns

  Economic cycle identification

  Policy intervention timing

  Crisis response analysis

Feature Interpretability

  Which features drive predictions?

  Education vs. economic factors

  Regional disparity analysis

  Targeted intervention guidance

  Cross-country comparisons

Policy Applications

  Labor market intervention design

  Education-employment alignment

  Regional development priorities

  Crisis response strategies

  Resource allocation optimization

Key Innovations

  Dual-path attention mechanism

  Multi-scale dilated CNN

  Dynamic regularization

  End-to-end interpretability

  Policy-guided feature selection

Framework Performance Advantages

Accuracy Improvement

12-18% vs baselines

Feature Importance

FIRC: 0.78 vs 0.52

Policy Alignment

PAAS: 0.82 score

Temporal Consistency

Superior DTW performance

 

Fig. 1 System Architecture with Proposed Feature 

Engineering Module. 

 

The architecture processes multivariate time series inputs 

X ∈ ℝT×d where T represents time steps and d denotes feature 

dimensions (e.g., education levels, regional GDP). As shown 

in Figure 1, the system comprises three core modules: 1) a 

gated dilated CNN for hierarchical feature extraction, 2) a 

dual-path attention mechanism for temporal and cross-

sectional dependency modeling, and 3) an importance-

weighted feature engineering module. 

The input layer applies median-based normalization 

(Equation 5) to handle outliers prevalent in employment data. 

For feature j at time t: 

x̃t,j =
xt,j − μmed,j

σmed,j
    (5) 

where μmed,j  and σmed,j  denote the median and median 

absolute deviation (MAD) of feature j across all time steps. 

B. Component Formulations and Functions 

The dilated CNN module employs depthwise-separable 

convolutions with exponentially increasing dilation rates r =

2l at layer l, capturing patterns from quarterly cycles to multi-

year trends. The gated activation mechanism combines 

temporal convolutions with pointwise projections: 

Ht
(l) = ReLU(Wdepth

(l) ∗r Ht
(l−1)) ⊙ σ(Wpoint

(l) Ht
(l−1))    (6) 

where ∗r denotes dilated convolution, Wdepth and Wpoint are 

depthwise and pointwise weight matrices, and ⊙ represents 

element-wise multiplication. This formulation allows the 

model to learn both local patterns and their contextual 

relevance simultaneously. 

The attention module processes the CNN outputs H(L) 

through parallel temporal and feature attention paths. For the 

temporal path: 

At
temp

= softmax (
(H(L)WQ)(H

(L)WK)
⊤

√dk
)     (7) 

https://library.fes.de/pdf-files/id/ipa/09227.pdf
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=0004900X&AN=6477276&h=AuJ1xjpurudxIpNkDfZcfN9JM%2B%2BlUYmXX5cVMuUeCZwFHpfWDG1Cn7YuqDq6ZBaOriDD4luYi3Lq3o8STqo42g%3D%3D&crl=c
https://www.academia.edu/download/40603720/AUOES-1-2015.pdf#page=431
https://pubs.aeaweb.org/doi/pdf/10.1257/jep.15.4.101
https://scholar.archive.org/work/dcndlufhsnesfiycnulxk4taoe/access/wayback/http:/econweb.umd.edu:80/~ham/ashenfelter_ham_jpe_1979.pdf
https://www.pnas.org/doi/pdf/10.1073/pnas.1900654116


 

where WQ and WK project inputs into query and key spaces 

of dimension dk. The feature attention path computes cross-

sectional weights Af analogously using transposed projections. 

The combined representation becomes: 

Z = [At
temp

H(L)WV; Af(H
(L))

⊤
WV

⊤]     (8) 

preserving raw attention scores for interpretability as in 

Equation (8). 

C. Integration, Normalization, and Regularization Techniques 

The feature engineering module aggregates attention scores 

into dynamic importance weights. For policy-relevant feature 

selection, we compute: 

vimp,j =∑αt,j

T

t=1

⋅ MLP(zt,j), αt,j =
exp(u⊤zt,j)

∑ expd
k=1 (u⊤zt,k)

    (9) 

where u is a learnable context vector that adapts to different 

economic regimes (e.g., recession vs. expansion periods). 

These weights guide LASSO regularization during 

prediction: 

min
β

∥ y − Φβ ∥2
2+ λ∑

|βj|

vimp,j

d

j=1

    (10) 

The inverse weighting in Equation 10 imposes stronger 

sparsity constraints on less important features while retaining 

high-impact variables identified by the attention mechanism. 

This differs from standard LASSO by incorporating the 

model’s own confidence about feature relevance. 

The complete framework processes inputs through these 

components in an end-to-end manner, with the CNN 

extracting multi-scale patterns, the attention mechanism 

identifying critical time steps and features, and the regularized 

output layer generating interpretable predictions. The 

preserved attention scores allow policymakers to trace 

predictions back to specific input features and temporal 

contexts—for example, identifying which educational 

qualifications became more predictive during economic 

recoveries. 

V. EXPERIMENTAL SETUP 

To validate the proposed framework, we designed 

comprehensive experiments comparing its performance 

against conventional and state-of-the-art methods across 

multiple youth employment datasets. This section details the 

evaluation protocol, baseline models, and implementation 

specifics. 

A. Datasets and Preprocessing 

We evaluated our approach on three longitudinal datasets 

capturing diverse youth labor market conditions: (1) European 

Youth Employment Survey [22] containing quarterly 

indicators from 2010-2022 across 31 countries, with 127 

features including education levels, vocational training 

participation, and sector-specific employment rates. (2) 

ASEAN Graduate Tracking System [23] with monthly records 

of university graduate employment outcomes from 2015-2021 

in six Southeast Asian nations. (3) US State-Level Youth 

Workforce Indicators [24] providing annual data on 

employment-population ratios, school-to-work transitions, and 

NEET (Not in Education, Employment or Training) rates. 

All datasets underwent consistent preprocessing: 

Missing values were imputed using median values within 

each country/state grouping 

Features were normalized using median absolute deviation 

(MAD) scaling as in Equation 5 

Temporal alignment was performed to handle differing 

reporting frequencies 

The datasets were partitioned chronologically into training 

(70%), validation (15%), and test (15%) sets, preserving 

temporal ordering to avoid look-ahead bias. 

B. Baseline Methods 

We compared our framework against five categories of 

baseline models representing different approaches to time 

series forecasting: 

1) Traditional Econometric Models 

Seasonal ARIMA [2] with automatic order selection via 

AIC. 

Vector Error Correction Model [25] for multivariate 

cointegration analysis. 

2) Machine Learning Approaches 

Gradient Boosted Trees [26] with temporal feature 

engineering. 

Support Vector Regression [27] with radial basis 

function kernel. 

3) Deep Learning Architectures 

LSTM Network [3] with attention mechanism. 

Temporal Convolutional Network [4] with residual 

connections. 

4) Hybrid Interpretable Models 

Explainable Boosting Machine [28]. 

Neural Additive Models [29]. 

5) Recent Specialized Approaches 

Graph Neural Network for multivariate time series [12]. 

Transformer-based forecasting model [30]. 

All baselines were implemented using their respective 

standard libraries and optimized via grid search on the 

validation set. 

C. Evaluation Metrics 

Performance was assessed using four complementary 

metrics: 

1) Predictive Accuracy 

Normalized Root Mean Squared Error (NRMSE): 

NRMSE=
√1
n
∑ (yi − ŷi)

2n
i=1

ymax − ymin
    (11) 

Mean Absolute Scaled Error (MASE) [31] 

2) Temporal Consistency 

Dynamic Time Warping (DTW) distance [32] between 

predicted and actual trend trajectories 

3) Interpretability Quality 

Feature Importance Rank Correlation (FIRC) comparing 

model-derived importance scores with expert rankings 

Policy Action Alignment Score (PAAS) measuring 

agreement between model explanations and known labor 

market mechanisms 

https://www.supplychainbusinesssolutions.com.au/assets/images/documents/mase.pdf
https://link.springer.com/chapter/10.1007/978-3-540-74048-3_4


 

4) Computational Efficiency 

Training time per epoch 

Memory footprint during inference 

D. Implementation Details 

Our framework was implemented in TensorFlow 2.8 with 

the following configuration: 

1) Dilated CNN Module: 

6 layers with dilation rates [1, 2, 4, 8, 16, 32] 

Kernel size of 3 for all convolutional layers 

64 filters per layer 

2) Attention Mechanism 

4 attention heads 

Key dimension dk = 32 

Dropout rate of 0.1 

3) Training Protocol: 

Batch size of 32 

Initial learning rate of 0.001 with cosine decay 

Early stopping with patience of 10 epochs 

Maximum 200 training epochs 

All experiments were conducted on NVIDIA V100 GPUs 

with 32GB memory. For fair comparison, baseline models 

were allocated equivalent computational resources. 

E. Statistical Testing Protocol 

To ensure robust conclusions, we employed: 

Diebold-Mariano tests [33] for pairwise model comparisons 

Benjamini-Hochberg procedure [34] for multiple hypothesis 

testing correction 

100 bootstrap samples for confidence interval estimation 

This rigorous evaluation framework allows comprehensive 

assessment of both predictive performance and practical utility 

for policy analysis. The next section presents quantitative 

results across all evaluation dimensions. 

VI. EXPERIMENTAL RESULTS 

A. Predictive Performance Comparison 

Table 1 presents the comparative performance across all 

datasets, measured by NRMSE and MASE. Our hybrid 

framework achieves superior results, with particularly strong 

gains in the ASEAN dataset where nonlinear cross-country 

interactions are prevalent. The 18.2% improvement over the 

best baseline (Temporal Fusion Transformer [30]) 

demonstrates the advantage of combining dilated convolutions 

with dynamic attention weighting. 

Table 1. Comparative prediction accuracy across methods and 

datasets 

Method 

Euro

pean 

NRM

SE 

ASEA

N 

NRM

SE 

US 

State 

NRM

SE 

Europe

an 

MASE 

ASEA

N 

MAS

E 

US 

State 

MAS

E 

Seasonal 

ARIMA 
0.142 0.187 0.121 1.32 1.45 1.28 

XGBoost 0.118 0.165 0.108 1.18 1.32 1.15 

LSTM 0.105 0.154 0.097 1.02 1.24 0.98 

Method 

Euro

pean 

NRM

SE 

ASEA

N 

NRM

SE 

US 

State 

NRM

SE 

Europe

an 

MASE 

ASEA

N 

MAS

E 

US 

State 

MAS

E 

with 

Attention 

TCN 0.098 0.146 0.092 0.95 1.18 0.94 

Temporal 

Transfor

mer 

0.091 0.139 0.087 0.89 1.12 0.89 

Proposed 

Framewo

rk 

0.082 0.114 0.079 0.81 0.92 0.82 

 

The temporal consistency results (Figure 2) reveal another 

critical advantage: our method maintains coherent long-term 

trend predictions where other models exhibit erratic 

fluctuations. This stability emerges from the dilated CNN’s 

ability to capture multi-scale dependencies while avoiding the 

vanishing gradient problems of recurrent architectures. 

 
Fig. 2 Dynamic Time Warping distances between predicted 

and actual employment trend trajectories across methods 

 

B. Interpretability Analysis 

The attention mechanism provides two forms of 

interpretability: temporal importance scores (revealing when 

features matter) and cross-sectional weights (showing which 

features matter). Figure 3 illustrates how these scores align 

with known labor market phenomena—for instance, 

highlighting vocational training participation as a critical 

predictor during economic recoveries. 

https://www.sciencedirect.com/science/article/pii/S0169207021000637


 

 
Fig. 3 Attention weights for selected features across different 

economic conditions 

Quantitatively, our framework achieves 0.78 FIRC (vs. 0.52 

for XGBoost and 0.61 for Neural Additive Models) and 0.82 

PAAS (vs. 0.68 for Temporal Transformer), demonstrating 

superior alignment with domain knowledge. The attention-

derived explanations successfully identify: 

Education level as the dominant predictor in developed 

economies 

Regional GDP growth as most influential in emerging 

markets 

Delayed effects (6-9 month lag) of policy interventions 

C. Computational Efficiency 

Despite its sophisticated architecture, the framework 

maintains practical efficiency: 

Training time: 38 minutes per epoch (vs. 42 for LSTM, 29 

for TCN) 

Memory usage: 4.2GB during inference (vs. 5.1GB for 

Transformer) 

Scalability: Linear time complexity with respect to input 

length 

The gated convolutions (Equation 6) contribute 

significantly to this efficiency by reducing redundant 

computations through their selective filtering mechanism. 

D. Ablation Study 

To isolate the contributions of key components, we 

conducted systematic ablations (Table 2). Removing the 

attention mechanism causes the largest performance drop (23% 

NRMSE increase), confirming its critical role in handling 

feature interactions. The dilated convolutions prove essential 

for long-horizon predictions, while the gating mechanism 

improves robustness to noisy indicators. 

Table 2. Ablation study on European dataset (NRMSE) 

Configuration NRMSE Δ vs. Full Model 

Full Framework 0.082 - 

Without Attention 0.101 +23.2% 

Without Dilated Convolutions 0.095 +15.9% 

Without Gating Mechanism 0.089 +8.5% 

Without Feature Engineering 0.086 +4.9% 

The feature engineering module shows more modest gains 

(4.9% improvement when included), suggesting that while the 

attention mechanism captures critical relationships, the 

explicit feature refinement provides additional stability—

particularly valuable in policy applications where consistent 

interpretations matter. 

E. Case Study: Pandemic Recovery Analysis 

Applying the framework to 2020-2022 European data 

reveals nuanced recovery patterns (Figure 4). The model 

identifies: 

Accelerated digital skills adoption as the strongest positive 

predictor. 

Persistent negative effects of early-career unemployment 

scars. 

Diverging recovery speeds across educational attainment 

levels. 

 
Fig. 4 Model-predicted vs. actual youth employment rates 

during COVID-19 recovery period 

These insights demonstrate the framework’s practical utility 

for targeted policy formulation—for instance, highlighting 

where retraining programs might yield the highest returns 

during economic transitions. 

VII. DISCUSSION AND FUTURE WORK 

A. Limitations and Potential Biases of the Framework 

While the proposed framework demonstrates strong 

predictive performance, several limitations warrant discussion. 

The attention mechanism’s interpretability remains 

constrained by its reliance on post-hoc analysis of weight 

distributions, which may not fully capture complex nonlinear 

interactions between socioeconomic factors. For instance, the 

model could overemphasize easily quantifiable features like 

educational attainment while underestimating harder-to-

measure social capital effects [35]. 

The framework’s current implementation also inherits 

biases present in official labor statistics, such as 

underreporting of informal employment prevalent among 

youth in developing economies [36]. This becomes 

particularly problematic when applying the model across 

heterogeneous regions, where data collection methodologies 



 

vary substantially. Future iterations could incorporate 

uncertainty quantification to flag predictions relying on 

potentially biased indicators. 

B. Broader Applications and Future Directions 

Beyond employment forecasting, the framework’s hybrid 

architecture suggests promising extensions to related domains. 

The attention-gated convolutions could be adapted for 

analyzing educational pipeline effects in workforce 

development programs [37], where understanding the time-

lagged impact of curriculum reforms requires similar multi-

scale temporal analysis. 

Three concrete directions emerge for methodological 

advancement: 

1) Cross-modal integration: Incorporating unstructured 

data from job postings or social media could enhance feature 

representations while maintaining interpretability through 

attention-based fusion [38]. 

2) Causal adaptation: Extending the framework with 

double machine learning techniques [39] would enable 

counterfactual analysis of policy interventions. 

3) Dynamic graph modeling: Explicitly encoding regional 

labor market connectivity through graph neural networks [40] 

could improve predictions in federal systems with strong 

interstate labor flows. 

C. Ethical Considerations and Responsible Deployment 

The framework’s policy applications raise important ethical 

questions requiring proactive mitigation strategies. The 

potential for algorithmic reinforcement of existing 

inequalities—such as systematically underestimating 

employment prospects for marginalized groups—necessitates 

rigorous fairness testing across protected attributes [41]. 

Implementation guidelines should address: 

Regular audits of feature importance distributions for 

discriminatory patterns 

Mechanisms to override automated predictions when they 

conflict with ground-level observations 

Transparent documentation of model limitations in official 

communications 

These safeguards become particularly critical when the 

framework informs resource allocation decisions affecting 

vulnerable youth populations. The attention weights, while 

providing interpretability, could inadvertently legitimize 

biased predictions if not contextualized with appropriate 

domain expertise [42]. Future work should develop 

participatory design frameworks to incorporate frontline 

practitioner knowledge into model refinement processes. 

VIII. CONCLUSION 

The proposed hybrid framework demonstrates significant 

advancements in both predictive accuracy and interpretability 

for youth employment trend forecasting. By integrating dilated 

convolutions with a dual-path attention mechanism, the model 

effectively captures multi-scale temporal patterns while 

providing transparent feature importance rankings. 

Experimental results across diverse datasets confirm its 

superiority over conventional econometric and deep learning 

approaches, particularly in handling nonlinear interactions and 

sudden labor market shocks. 

The framework’s ability to generate policy-actionable 

insights represents its most valuable contribution. Attention-

derived feature weights align with established labor economic 

theories, enabling decision-makers to identify critical drivers 

of youth employment under varying economic conditions. 

This interpretability, combined with robust predictive 

performance, addresses a longstanding gap in computational 

labor market analysis—bridging the divide between data-

driven forecasting and theoretically grounded policy 

formulation. 

Future enhancements could further strengthen the 

framework’s real-world applicability. Incorporating causal 

inference techniques would allow for more rigorous evaluation 

of policy interventions, while dynamic graph modeling could 

better capture regional labor market interdependencies. 

Maintaining a focus on ethical considerations remains 

paramount, ensuring that model outputs do not inadvertently 

reinforce existing inequalities or biases in labor market 

systems. 

The success of this approach suggests promising directions 

for interpretable machine learning in socioeconomic 

forecasting. Similar hybrid architectures could be adapted to 

other complex temporal prediction tasks requiring both 

accuracy and transparency, from educational outcome 

modeling to public health trend analysis. As labor markets 

continue evolving amid technological and demographic shifts, 

such tools will become increasingly vital for evidence-based 

policy design targeting youth employment challenges 

worldwide. 
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